2018 Applied Chemistry Laboratory II

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Chemical Science and Engineering
Instructor(s)
Mikami Koichi  Okamoto Masaki  Tanaka Hiroshi  Kuwata Shigeki  Yamanaka Ichiro  Ito Shigekazu 
Course component(s)
Mode of instruction
 
Day/Period(Room No.)
Mon5-8(H113,H114,H115)  Tue5-8(H113,H114,H115)  
Group
-
Course number
CAP.A302
Credits
2
Academic year
2018
Offered quarter
4Q
Syllabus updated
2018/4/5
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

[Summary of the course] In this lecture, organic synthesis and organometallics will be taught through chemical experiments. By carrying out experiments of two topics, "Asymmetric synthesis of chiral molecules via stereoselective carbon-carbon bond formation" and Homogeneous catalysis using transition metal complexes", reaction procedures under inert atmosphere and dry conditions, separation and purification techniques using column chromatography, instrumental analyses such as characterization by NMR and IR spectroscopies and determination of optical purities using HPLC will be taught.
[Aim of the course] This lecture facilitates students' understanding about previous lectures such as Organic Chemistry, Inorganic Chemistry and Chemistry of Catalytic Processes through experiments. Furthermore, students master techniques for synthetic chemical research, and this lecture also facilitates problem-identifying ability and problem-solving ability by communizing results obtained under different experimental conditions and deep discussion. Students will be able to fill a gap between the forefront of chemical research and experimental class through experiments in this lecture.

Student learning outcomes

By the end of this course, students acquire the following ability:
1) Ability to carry out experiment for organic synthetic reactions under inert atmosphere and dry conditions.
2) Ability to carry out experiment for asymmetric synthesis of chiral molecules.
3) Ability to explain mechanisms of homogeneous catalyses based on the combination of fundamental processes of organometallic complexes.
4) Ability to determine molecular structures of organic and organometallic compounds using spectroscopic analyses including NMR.

Keywords

carbon-carbon bond formation, asymmetric synthesis, organometallic complexes, homogeneous catalysis, coupling reaction

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

This lecture consists of two topics "Asymmetric synthesis of chiral molecules via stereoselective carbon-carbon bond formation" and "Homogeneous catalysis using transition metal complexes", and will proceed in the following order: experimental outline, experiment, analysis and presentation.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Experiment outline Explain asymmetric synthesis and homogeneous catalysis.
Class 2 Oganic Synthesis 1: Preparation of Grignard reagent Explain property of Grignard reagent.
Class 3 Oganic Synthesis 2: 1,2-Addition reaction to aldehyde with Grignard reagent Analyze 1H NMR spectrum of 1,2-adduct.
Class 4 Oganic Synthesis 3: Kinetic resolution of racemic alcohol Explain enantioselctivity and diastereoselectivity.
Class 5 Oganic Synthesis 4: Isolation by silica-gel column chromatography Explain methods for purification and isolation of organic compounds.
Class 6 Oganic Synthesis 5: Hydrolysis of carbonate ester Explain mechanism of hydrolysis of esters.
Class 7 Oganic Synthesis 6: Johnson-Claisen rearrangement Explain mechanism of [3,3]-sigmatropic rearrangement.
Class 8 Oganic Synthesis 7: Presentation Analyze data logically and present results.
Class 9 Organometallics 1: Homo-coupling reaction using copper salts Explain atom efficiency and E-factor.
Class 10 Organometallics 2: Palladium-catalyzed reduction using formic acid Analyze 1H NMR spectrum of biaryl compounds.
Class 11 Organometallics 3: Palladium-catalyzed cross-coupling reaction Explain fundamental reactions of organometallic complexes.
Class 12 Organometallics 4: Synthesis of hydridoruthenium complex Analyze multi-nuclear NMR spectra of organometallic complexes.
Class 13 Organometallics 5: Isomerization of allyl ether catalyzed by ruthenium complex Analyze NMR spectrum of alkene isomers.
Class 14 Organometallics 6: Ruthenium-catalyzed hydrogen transfer reactions Explain mechanism of homogeneous catalysis.
Class 15 Organometallics 7: Presentation Analyze data logically and present results.

Textbook(s)

Textbook of Applied Chemistry Laboratory 2016-2018, edited by committee for the chemical engineering and industrial chemistry laboratory (Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Chemical Science and Engineering). This textbook will be distributed on the first lecture day.

Reference books, course materials, etc.

Throughout the course, additional reference materials will be provided as necessary.

Assessment criteria and methods

Full attendance and completion of all experiments are compulsory.
Reports (60%), Quality of presentation (20%), Performance in the question and answer session (20%).

Related courses

  • CAP.B315 : Organic Chemistry V (Carbonyl Compounds)
  • CAP.A334 : Advanced Organic Chemistry IV (Organic Synthesis)
  • CAP.A382 : Exercise in Analytical Chemistry
  • CAP.A355 : Chemistry of Catalytic Processes I (Homogeneous)
  • CAP.A373 : Inorganic Chemistry (Coordination Chemistry)
  • CAP.A301 : Applied Chemistry Laboratory I

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Students must have successfully completed Chemical Engineering and Industrial Chemistry Laboratory I a/b & b/a (CAP.B201.R, CAP.B202.R), Chemical Engineering and Industrial Chemistry Laboratory II a/b & b/a (CAP.B203.R, CAP.B204.R), and Chemical Engineering and Industrial Chemistry Laboratory III (CAP.B205.R) or have equivalent knowledge.

Page Top