2024 Bipolar Transistors and Compound Semiconductor Devices

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Electrical and Electronic Engineering
Instructor(s)
Miyamoto Yasuyuki 
Class Format
Lecture     
Media-enhanced courses
Day/Period(Room No.)
Tue1-2(S2-202(S223))  Fri1-2(S2-202(S223))  
Group
-
Course number
EEE.D451
Credits
2
Academic year
2024
Offered quarter
1Q
Syllabus updated
2024/3/14
Lecture notes updated
-
Language used
English
Access Index

Course description and aims

This course describes how to design the structure of a bipolar transistor, which has good current drivability, by explaining each layer for electron device properties at first. Then, figures of merit for high-speed applications are described with modeling for circuits. In the last part, compound semiconductor which has superior properties as electron devices are discussed. After the explanation of physical properties, transistors that are used in cell phones, such as HEMT and HBT are described. Finally, compound semiconductor power devices and III-V MOSFETs are described as prospective devices.
The Target of this lecture is to learn the numerical evaluation of physical phenomena in electron devices by using bipolar devices which have the longest history as transistors with matured techniques. As lectures at graduate school, exhaustive learning of the device's knowledge (as the level of authority of the field) is aimed. In compound semiconductors, a similar method is applied.

Student learning outcomes

Comprehension of methods for high speed in bipolar transistors is aimed at first, and knowledge of electric properties and application of compound semiconductors are followed.
Treated subjects are:
The density of states, diffusion, drift, transport equation, recombination, band diagram, hole current in emitter layer, drift transistor, bandgap shrinkage by doping, SiGe HBT, Early effect, breakdown voltage, saturation velocity, Kirk effect, analysis of delay time, cutoff frequency, maximum oscillation frequency, large signal model. compound semiconductor, heterojunction, hot electron, inter-valley scattering, heterojunction bipolar transistors, compound semiconductor field effect transistors, power devices with wide bandgap semiconductors, III-V MOSFET, etc.,

Keywords

Bipolar transistors, compound semiconductor, device physics, equivalent circuit of electron devices

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Because the amount of knowledge is huge, each lecture asks for simple calculations as homework. Moreover, three numerical practices are given.
Any textbook or notebook can be used as a reference in the final examination (description of comprehension).

Course schedule/Required learning

  Course schedule Required learning
Class 1 Basic properties of bipolar transistors Calculate collector current and base current at provided structures
Class 2 Gummel plot with various effects Draw Gummel plot with various effect
Class 3 Modulation of doping and composition in base Calculate collector current with modulation of composition of base
Class 4 Early effect and breakdown voltage Calculate maximum current and breakdown voltage at provided structures
Class 5 Practice Numerical practice of classes 1-4
Class 6 Small equivalent circuits Calculation of fT and fmax at provided structures
Class 7 Impact of collector design on dynamic characteristics and measurement method Microwave properties at provided structures
Class 8 Modeling of large signal equivalent circuits Draw I-V characteristics by Gummel-poon model
Class 9 Large signal circuit Calculate speed in ECL circuit
Class 10 Practice Numerical practice of classes 6-9
Class 11 Compound semiconductor and MESFET Calculate characteristics of MESFET at provided structures
Class 12 Heterojunction and III-V HBT Calculate characteristics of HBT at provided structures
Class 13 HEMT Calculate characteristics of HEMT at provided structures
Class 14 Power devices with wide bandgap semiconductors and III-V MOSFET Calculate characteristics of III-V MOSFET at provided structures

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterward (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

NA

Reference books, course materials, etc.

Distributed at T2SCHOLA. Reference of classes 1-10 is "Fundamentals of Modern VLSI Devices. 2nd Edition" by Taur and Ning.

Assessment criteria and methods

Evaluate by comprehension of methods for high speed in bipolar transistors and knowledge of electric properties and application of compound semiconductors.
Each homework (12 times 40%), Two practice (20%), and final examination (40%)

Related courses

  • EEE.D351 : Electron Devices I
  • EEE.D211 : Semiconductor Physics
  • EEE.C211 : Analog Electronic Circuits

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Knowledge of electron devices I (D351), semiconductor physics(D211), and analog electronic circuits (C211) are required.

Page Top