2018 Joining

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Mechanical Engineering
Sato Chiaki  Yamazaki Takahisa 
Course component(s)
Day/Period(Room No.)
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

A junction is when a binding force emerges between two parts through a joint interface. Some type of energy is used to create the binding force, and results in organization forming at the joint interface. Because the making of organization influences its reliability, security, durability, thermal resistance, and corrosion resistance as a machine, the instructor integrates modern junction techniques and products into the lecture. The instructor then covers adhesive bonding technology that is growing in importance. Specifically students learn about surface processing, selection of adhesives, mechanical design of joints, evaluation and assurance of durability, and content related to joining equipment systems, thereby learning knowledge of adhesive bonding technologies necessary for a mechanical engineer.

Student learning outcomes

Joining parts is essential for the manufacturing of industrial products. In this course, we will start by showing the big picture of joints engineering. Students will acquire general knowledge related to welding, and brazing and soldering. We will then cover glued connection technology that is of increasing importance in recent years. Students will specifically learn about surface treatment, adhesive selection, mechanical design of joints, evaluation and assurance of durability, and joining equipment systems. Students will also acquire knowledge on glued connections technology needed for mechanical engineers.
Students will gain the following knowledge by taking this course.
1. Be able to classify energy sources used for joining, and the advantages of those energy sources.
2. Understand organizational formation of joint interfaces for welding, brazing and soldering, diffusion bonding, and friction bonding, and be able to logically explain joining techniques for products.
3. Be able to explain reliability, security, durability, heat-resistance, and corrosion resistance from the interface organization state.
4. Acquire skills for surface treatment, the selection of adhesives, the mechanical design of joints, and the evaluation of durability.


Joining, Welding, Friction Welding, Surface Treating, Gluing, Interfacial Structure, Reliability, Durability, Heat Resistance, Corrosion-resistance

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Comprised of 8 lectures that lead from knowledge in metallurgy and chemistry to mechanical engineering. Typical methods of analysis are explained.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Introduction of joining Energy for Fusion, surface energy, Interfacial Energy, Heat source, Power supplier, etc.
Class 2 Liquid Phase Bonding (Welding and Brazing) Thermal Conductivity model of line heat source
Class 3 Solid Phase Bonding (Diffusion Bonding and Friction Stir Welding) Grain Boundary, Dislocation, Hardening
Class 4 Mechanical Joining Maintenance of mechanical system
Class 5 Gluing and Surface treatment Adhesion mechanism and surface conditions
Class 6 Dynamics of adherability at the interface ( Static Force, Impactive Force) Shear-Lag model
Class 7 Dynamics of adherability at the interface ( Fatigue, Creep) Intrinsic characteristics of adhesives
Class 8 Summary Concept for joint design


Ohnaka, Araki, Fusion and Solidification/ Removal Processing, Corona printed, 1987, ISBN4-339-04058-4.
David Brandon, Wayne D. Kaplan/ Joining Process An Introduction, WILEY, ISBN 0-471-96488-3

Reference books, course materials, etc.

Haraga ISBN 978-4-526-07000-6
Haraga ISBN 978-4-526-07156-0

Assessment criteria and methods

Students' knowledge of joining, gluing, and reliability, and their ability to apply them to problems will be assessed.
exercise problems 50% and report 50%.

Related courses

  • MEC.G211 : Mechanical Materials
  • MEC.G311 : Introduction to Manufacturing Engineering

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Mechanical Materials

Page Top