2022 Thermodynamics (EPS course)

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Earth and Planetary Sciences
Omori Soichi  Yokoyama Tetsuya 
Class Format
Lecture / Exercise    (Livestream)
Media-enhanced courses
Day/Period(Room No.)
Tue7-8(I123)  Fri7-8(I123)  
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

The Earth is a complex multicomponent system, though each component of the Earth system is largely controlled by physical and chemical processes. For example, the formation of rocks or minerals can be described by the thermodynamics, which can be formulated as functions of temperature, pressure, and chemical composition. This course consists of basic and application classes. The first seven classes focus on fundamental laws and thermodynamic potentials. The second half of the course focuses on applications of aqueous chemistry, thermodynamics of rocks and minerals through lectures and solving problem sets.

Student learning outcomes

At the end of the basic classes, students will understand the first law, the second law, and various thermodynamic potentials. Students will be able to solve basic problems related to such fundamental issues.
At the end of the application classes, students will acquire the ability to use thermodynamics for solving geochemical problems.


Free energy, Equation of state, Phase rule, Aqueous solution, Solid solution, Paragenesis of minerals

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Before coming to class, students should read the course schedule and prepare for the topics with handouts and references.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Introduction Introduction to thermodynamics
Class 2 Basic of thermodynamics Understanding basic of thermodynamics
Class 3 Free energy (1) Understanding free energy
Class 4 Free energy (2) Understanding P-T dependence of GIbbs energy
Class 5 Phase equilibrium of multicomponent system (1) Understanding the phase rule using a phase diagram for the mantle
Class 6 Phase equilibrium of multicomponent system (2) Understanding the derivation of reaction formula
Class 7 Exercise-Basic Solve problems of thermodynamics concerning the first law and the second law.
Class 8 Phase equilibrium including fluid phase: Equation of state of fluid Understanding phase equilibrium including fluid phase and equation of state of fluid
Class 9 How to caluclate phase equilibrium and Exercise-Application (1) Understanding the calculation of equilibrium
Class 10 Thermodynamics of solid solution and its application to geothermo-barometry Understanding thermodynamics of solid solution and geothermo-barometry
Class 11 Thermodynamics of aqueous solution (1) Understanding thermodynamics of aqueous solution
Class 12 Thermodynamics of aqueous solution (2) and Exercise-Application (2) Introducing a few examples treating aqueous solution
Class 13 Evaluation of thermodynamic constants Learn how to evaluate thermodynamic constants
Class 14 Gibbs energy minimization method and Exercise-Application (3) Understanding the Gibbs energy minimization method and excercise on phase diagram calculations

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.


Handouts will be provided during the class

Reference books, course materials, etc.

P.W. Atkins "Atkins' Physical chemistry 10th edition" Oxford University Press
Etsuo Uchida "Thermodynamics in Mineralogy and Petrology" Kyoritsu Shuppan (in japanese)
Sadao Matsuo "Geochemistry" Kodansha (in Japanese)

Assessment criteria and methods

Students will be assessed on their understanding for the thermodynamics of water, rocks, and minerals.
Students' course scores are based on exercises and the final exam.

Related courses

  • EPS.B211 : Inorganic Chemistry (EPS course)
  • EPS.A201 : Introduction to Material Sciences of Earth and Planet
  • CHM.B334 : Geochemistry
  • EPS.A331 : Earth Materials

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisite

Page Top