2021 Astrophysics

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Physics
Matsuhara Hideo 
Course component(s)
Lecture    (ZOOM)
Day/Period(Room No.)
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

This course covers the various celestial bodies that exist in the universe, such as stars and galaxies, as well as their structure, birth, and evolution. Thanks to developments in observing the universe in recent years, in particular the operation of space telescopes, our understanding of celestial phenomena has advanced in leaps and bounds. We will cover various celestial phenomena, in connection with the latest observational results. We will also cover the radiative process of electromagnetic waves and particles necessary for understanding these kinds of celestial phenomena.
The goal of this course is to utilize knowledge in mechanics, electromagnetism, thermal and statistical mechanics, quantum mechanics, etc. learned up to this point to explain our view of the universe based on the latest observations from a physics viewpoint.

Student learning outcomes

At the end of this course, students will be able to
1) Explain underlying physics of the various phenomena in the universe.
2) Explain the phenomena revealed by the latest space observations.
3) Explain characteristics of black-body radiation, spectral line emission from atoms and ions, and the thermal emission, which are important to understand the universe.


Universe, astrophysics, stars, astronomy, observations

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills
Specialty to understand various phenomena in the universe applying the basic knowledge of physics.

Class flow

Lectures will be given by explaining the latest observational results using slides, and explaining phenomena on the blackboard. The slides are basically written in English with partial Japanese translation. This course will be mostly given in English, but Japanese is also used partially.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Basic of the observational astrophysics Explain the definition of the celestial coordinate system, basic words used for optical, infrared and radio astronomy.
Class 2 Stars and galaxies Explain the basic physical parameters of stars and galaxies.
Class 3 Interstellar Matter (gas) Explain the classification, and observational measurement methods of interstellar gas.
Class 4 Interstellar Matter (dust grains) Explain the classification, and observational measurement methods of interstellar dust.
Class 5 Basic of radiative transfer Understand the basic framework of radiative transfer.
Class 6 Black-body radiation Understand the derivation of black-body radiation, and its basic properties.
Class 7 Expansion of the universe and galaxy evolution Explain the history of the Universe emerged from observational facts.

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 50 minutes preparing for class and another 50 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to reference books and other course material.


none required

Reference books, course materials, etc.

・S. Okamura et al. "Series modern astronomy (vol.4, 8)"、 Nihon Hyouronsha (Japanese)
・G.B. Rybicki & A.P. Lightman "Radiative Process in Astrophysics" (John Wiley & Sons, NY)

Assessment criteria and methods

Assess the achievement of the goal of this lecture based on the written report.
Evaluation is based on the standard criteria.

Related courses

  • LAS.P101 : Fundamentals of Mechanics 1
  • PHY.E205 : Electromagnetism
  • EPS.B330 : Fluid Mechanics (EPS course)
  • PHY.S209 : Thermodynamics (Physics)
  • PHY.S301 : Statistical Mechanics
  • PHY.F352 : Physics of the Universe
  • PHY.Q207 : Introduction to Quantum Mechanics

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites are necessary, but enrollment of related courses are desirable.

Contact information (e-mail and phone)    Notice : Please replace from "[at]" to "@"(half-width character).

Prof. Hideo Matsuhara, matsuhara.h.aa[at]m.titech.ac.jp

Page Top