2024 Research opportunity in Laboratories (PHY)

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Physics
Uchida Masaki  Fujioka Hiroyuki  Kaneko Shin-Ichi  Uchida Makoto  Fujiyoshi Satoru  Kondo Yosuke  Ichinokura Satoru  Yamada Kihiro  Nishihaya Shinichi  Watanabe Atomu  Saito Ryoichi  Todome Kazuki  Matsuura Keisuke 
Class Format
Media-enhanced courses
Day/Period(Room No.)
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

This course facilitates students' understanding of principles and methods of advanced observation techniques which constitute important bases in the wide area in physics as well as presentation skills.
In this lecture, each student sets up various measurement systems, and prepare sample materials, and actually detects the signals from nature and the responses from nature to the applied excitation. Through these experiences, each student asks not only to acquire the advanced observation techniques, but also to enjoy the experiments on the physics.

Student learning outcomes

At the end of this course, students will be able to:
1. Acquire the advanced experimental techniques for the research on physics.
2. Acquire the ability to capture the essence of the observed phenomena and to find essential issues to be solved based on the examination of experimental results.
3. Acquire the skills to make a presentation that other people can easily understand


Mössbauer effect, radiation, ion trap, astronomical data analysis, laser, time resolved measurements, superconductor, ferroelectrics, semiconductor

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Following the guidance, each student selects 3 experimental subjects among 10~12 experimental subjects. Students perform laboratory experiments on each subject for four course hours in the afternoon and due to submit their own experimental report before the prescribed deadline. For the final subject, students will be asked to make a presentation about the experiment's contents.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Each student performs several laboratory experiments among the following subjects. Each experiment on a subject completes four course hours in the afternoon. 1. Mössbauer effect 2. β-ray spectrometer 3. observation of gamma rays and cosmic rays 4. ion trap 5. α-ray 6. astronomical data analysis 7. dye lasers 8. time resolved photoluminescence spectroscopy 9. ferroelectricity and computer-aided measurements 10. high-Tc superconductors 11. carrier transport in semiconductors Explain the physics which dominates the phenomena observed in the experimental subjects you have selected and the principles and method of the observation techniques used in them.


A textbook issued by staffs in the Physics Department will be given. Some other books may also be used when necessary.

Reference books, course materials, etc.


Assessment criteria and methods

Based on attendances (including that to the Guidance), discussions and submitted reports, and presentations.

Related courses

  • PHY.L202 : Experiments in Physics A
  • PHY.L203 : Experiments in Physics B
  • Basic experiments in physics
  • PHY.E212 : Electromagnetism II
  • PHY.E205 : Electromagnetism
  • PHY.Q207 : Introduction to Quantum Mechanics
  • PHY.Q208 : Quantum Mechanics II
  • PHY.S301 : Statistical Mechanics

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Classes, exercises and basic physics experiments held until the second quarter of the third year for Physics Course students are recommended to be studied before taking this course.


Consult the course instructors if you wish to register without attending the guidance.

Page Top