2019年度 土木解析学   Civil Engineering Analysis

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
土木工学コース
担当教員名
廣瀬 壮一  BUI QUOC TINH 
授業形態
講義
曜日・時限(講義室)
月7-8(M321)  木7-8(W833)  
クラス
-
科目コード
CVE.M401
単位数
2
開講年度
2019年度
開講クォーター
3Q
シラバス更新日
2019年9月17日
講義資料更新日
-
使用言語
英語
アクセスランキング

講義の概要とねらい

本講義は, 土木工学における課題を解決するために用いられる数値解法に関する考え方,基礎的知識及び実装を教授することを目的とする.特に,境界要素法(BEM)や有限要素法(FEM)といった最もよく用いられる数値解法に深く関連する変分法を含めて,解析手法の定式化について詳述する.BEMとFEMの両手法について,基礎的な考え方と実装の具体例を1次元及び2次元問題を例に述べる.すなわち,両手法に対するモデル構築,メッシュ生成,手法の妥当性の確認と検証,計算結果,文書化,計算プログラミング,土木工学における典型的解析例などが示される.

本講義はいくつかの土木工学における"線形問題"への理論と応用を通して,最も一般的な数値解法であるBEMとFEMを紹介するもので,そのレベルは数値解法の導入に相当する.この授業のねらいは,単に計算手法の基礎的概念を修得するだけでなく,今後取り組むであろう研究において本講義の内容をいかに役立てられるかという観点で,数値解法の基礎を築いてもらいたい.

到達目標

本講義を履修することによって次の能力を修得する.
1. 土木工学における問題に対する数値解法の基礎を説明でき,応用できる.
2. 変分法,重み付残差,ガラーキン法,有限要素法及び境界要素法の関係を理解し,説明できる.
3. 有限要素法と境界要素法の理論と数値手法を説明できる.
4. 簡単な問題に対して 有限要素法と境界要素法のアルゴリズムを構築し,プログラムを開発できる.
5. 工学,特に土木工学における問題を数値解法を用いてシミュレーションを行う重要性について理解する.

キーワード

重み付き残差法,数値解析,近似,有限要素法,境界要素法,計算工学,数値解法

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - -

授業の進め方

本講義は,主に講義形式で行われる.ただし,数値解析の基本を十分に理解してもらうために,有限要素法や境界要素法などのプログラミングを含めた実践的な演習を課す.

授業計画・課題

  授業計画 課題
第1回 講義の導入と数学的基礎の復習 講義の目的と数値解法に用いられる基礎的数学の理解
第2回 直接剛性法(棒及びトラス要素) 直接剛性法を用いて,棒及びトラスの例題を解く.
第3回 有限要素法によるモデル化とメッシュ生成 有限要素法によるモデル化とメッシュ生成のすべての手順を理解する.
第4回 変分法-1 (重み付き残差法,ガラーキン法) 重み付き残差法,ガラーキン法を説明することができ,関連する問題を解くことができる.
第5回 変分法-2 (エネルギー法) 有限要素による近似,定式化,エネルギー法について説明することができ,関連する問題を解くことができる.
第6回 境界要素法- 一次元問題 一次元境界要素法の定式化を説明できる.
第7回 境界要素法- 多次元問題 多次元境界要素法の定式化を説明できる.
第8回 境界要素法-数値手順と例 境界要素法の数値手順を説明でき,その例を示すことができる.
第9回 中間評価(試験) BEMとFEMに関する復習
第10回 有限要素法の実装- 1次元及び2次元問題 エネルギー法を用いて,剛性行列や荷重ベクトルといった有限要素方程式を導くことができる.
第11回 三角形及び四角形要素 三角形及び四角形要素を定式化できる.
第12回 アイソパラメトリック要素 ヤコビ行列,写像などを用いてアイソパラメトリック要素を定式化できる.
第13回 有限要素法における数値積分と特別な要素 有限要素法におけるガウス法による数値積分の実施と3次元要素,多角形要素,適合要素といった特別な要素について定式化できる.
第14回 土木工学への応用と復習 土木工学における実践的問題に対して数値解法を用いた解析を理解する.
第15回 復習(最終試験) 最終試験による復習

教科書

特になし

参考書、講義資料等

講義資料をOCW-iにアップロードする.

成績評価の基準及び方法

中間試験 40%,最終試験 60%

関連する科目

  • CVE.M301 : 数値解析基礎・演習
  • CVE.M302 : 応用数値解析・演習

履修の条件(知識・技能・履修済科目等)

数値解析基礎・演習(CVE.M301)および応用数値解析・演習(CVE.M302)を履修していること,あるいは,同等の知識を持っていること.

このページのトップへ