2018年度 幾何学特論   Topics in Geometry

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数理・計算科学コース
担当教員名
梅原 雅顕  西畑 伸也  寺嶋 郁二  三浦 英之  室伏 俊明  鈴木 咲衣 
授業形態
講義
曜日・時限(講義室)
月5-6(H117)  木5-6(H117)  
クラス
-
科目コード
MCS.T504
単位数
2
開講年度
2018年度
開講クォーター
2Q
シラバス更新日
2018年3月20日
講義資料更新日
-
使用言語
英語
アクセスランキング

講義の概要とねらい

平面曲線や空間曲面を波面とみなして,その時間発展を考えると,特異点がしばしば現れる.この講義では,曲線・曲面を扱う上で重要な微分幾何学な手法を特異点を含めた形で紹介し,さらに重要な特異点について判定法や性質についても解説する.曲線論,曲面論をどこかである程度学んでいることが望ましいが,講義では基礎知識がなくても理解できるよう,基礎的な事柄から解説する.また,多様体論の基礎を学んでいると理解が深まります.

到達目標

【テーマ】 本講義は,平面上の曲線や空間内の曲面について,曲率などの基本的事項を解説し,これらの対象を数式として扱う上で有用な手法を紹介する.同時に,曲線や曲面に現れる代表的な特異点について,具体例を示しながら,その判定法や幾何学的性質を紹介する.内容の理解を深めるために,毎回の講義では適宜コンピュータグラフィックスを用いて,具体例の解説を行う.
【到達目標】 本講義を履修することにより,曲線や曲面を扱う上で不可欠な幾何学的手法の基礎を理解し,それらをさまざまな具体的な問題に応用できるようになることを目標とする.

キーワード

曲線,曲面,特異点,ガウス曲率,波面

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- -

授業の進め方

曲線,曲面および特異点に関する基本的な事項を講義する.

授業計画・課題

  授業計画 課題
第1回 平面曲線の基礎事項1(特異点,正則点,曲率関数) 講義の内容を理解する.
第2回 平面曲線の基礎事項2 (4頂点定理,回転数) 講義の内容を理解する.
第3回 平行曲線,縮閉線,特異点としてのカスプの紹介 講義の内容を理解する.
第4回 波面としての曲線 講義の内容を理解する.
第5回 特異点における曲率関数のふるまいとカスプの判定法 講義の内容を理解する.
第6回 カスプの判定条件の具体例への応用 講義の内容を理解する.
第7回 曲面論の基礎事項1(第一基本形式,第二基本形式) 講義の内容を理解する.
第8回 曲面論の基礎事項2(ガウス曲率,平均曲率,主曲率) 講義の内容を理解する.
第9回 ガウス・ボンネの定理 講義の内容を理解する.
第10回 平行曲面におけるガウス曲率と平均曲率の関係 講義の内容を理解する.
第11回 波面としての曲面 講義の内容を理解する.
第12回 曲面に現れる代表的な特異点の紹介 講義の内容を理解する.
第13回 平面曲線のカスプ特異点の判定条件の証明 講義の内容を理解する.
第14回 曲面に現れる交叉帽子特異点とカスプ辺の判定条件 講義の内容を理解する.
第15回 特異点の判定条件の具体例への応用 講義の内容を理解する.

教科書

特になし

参考書、講義資料等

特異点をもつ曲線と曲面の幾何学(梅原雅顕著)慶応義塾大学理工学部数理科学科レクチャーノート No.38, 2009, 曲線と曲面(梅原雅顕・山田光太郎共著)裳華房,2002

成績評価の基準及び方法

出席・レポート等により総合的に判断する.

関連する科目

  • MCS.T331 : 離散構造

履修の条件(知識・技能・履修済科目等)

位相空間論,ベクトル解析などにある程度精通していることが望ましい.

このページのトップへ