2020年度 知能情報特別講義S   Advanced Topics in Artificial Intelligence S

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
知能情報コース
担当教員名
鈴村 豊太郎 
授業形態
講義
曜日・時限(講義室)
集中講義等   
クラス
-
科目コード
ART.T454
単位数
2
開講年度
2020年度
開講クォーター
1-2Q
シラバス更新日
2020年4月28日
講義資料更新日
2020年5月14日
使用言語
英語
アクセスランキング
media

講義の概要とねらい

本科目は、数理情報、知能情報、生命情報、社会情報などの幅広い情報学の最先端のトピックに外部講師によって、短期間に集中講義を行う。
本科目の狙いは、社会で活躍する一線の研究者による幅広い分野の研究の話題を講義することによって、学生の視野を広げることにある。

到達目標

数理情報、知能情報、生命情報、社会情報に関する最先端のトピックに関する知識を修得できる。

キーワード

数理情報学、知能情報学、生命情報学、社会情報学

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力

授業の進め方

担当講師が選んだトピックについての講義を行う.

授業計画・課題

  授業計画 課題
第1回 グラフアルゴリズム グラフ理論
第2回 演習
第3回 グラフデータベース グラフ理論
第4回 演習
第5回 グラフ解析と機械学習 機械学習
第6回 演習
第7回 グラフ構造データに対する深層学習 ニューラルネットワーク
第8回 演習
第9回 グラフ構造データに対する深層学習 ニューラルネットワーク
第10回 演習
第11回 高性能計算と大規模グラフ学習 高性能計算
第12回 演習
第13回 大規模グラフ学習とユースケース グラフ理論
第14回 演習

教科書

なし

参考書、講義資料等

講師が指定する

成績評価の基準及び方法

講義中の演習と終了後のレポートによる

関連する科目

  • なし

履修の条件(知識・技能・履修済科目等)

なし

その他

詳細については決まり次第掲示する.

このページのトップへ