2019年度 モデリングの数理   Mathematical Modeling

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数理・計算科学系
担当教員名
高安 美佐子  高安 秀樹 
授業形態
講義
曜日・時限(講義室)
月7-8(W834)  木7-8(W834)  
クラス
-
科目コード
MCS.T315
単位数
2
開講年度
2019年度
開講クォーター
3Q
シラバス更新日
2019年8月2日
講義資料更新日
2019年11月14日
使用言語
日本語
アクセスランキング

講義の概要とねらい

不確実性を伴う、複雑度が高いなどの理由から第一原理からの記述が難しい現象を理解するためには、それらを数理的な問題として定式化する「モデリング」の作業が特に重要になる。本講義では、確率的な要素や非線形性を含む代表的な現象を例示しながら、モデリングに必要となる基本的な数理について学ぶ。

到達目標

確率的な要素や非線形動力学を含む現象に関する基本的な数理モデルを学ぶことを通じて、より複雑な現象に対し発展的なモデリングを行うための基礎を身に付ける。

キーワード

確率変数、確率分布、相関、拡散現象、ブラウン運動、分岐過程、相転移現象、輸送現象、複雑ネットワーク、

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- -

授業の進め方

それぞれの講義内容に対し、具体的な現象を先に提示し、それをどのような観点から数理的問題として定式化するかについて解説する。

授業計画・課題

  授業計画 課題
第1回 モデリングとは 観測・モデル構築・解析・モデルの評価についての導入をする。
第2回 現象の観測と基本モデル1 指数分布や正規分布などの基本的な分布と、その背後にある数理モデルを学習する。
第3回 現象の観測と基本モデル2 ベキ分布と、その背後にある数理モデルを学習する。
第4回 現象の観測と基本モデル3 非線形動力学と、基本的な数理モデルを学習する。
第5回 拡散現象のモデリング1 マクロな不可逆現象である拡散を考え、拡散方程式について学習する。
第6回 拡散現象のモデリング2 ミクロの視点から拡散現象をとらえ直し、ランダムウォークから拡散現象の特性を導出する。
第7回 拡散現象のモデリング3 拡散現象の応用として、金融市場の価格変動のモデルを学習する。
第8回 拡散現象のモデリング4 ミクロな視点からの金融市場の価格変動のモデルを学習する。
第9回 分枝・凝集現象のモデリング1 様々なシステムで観測される分枝現象について解説し、分岐過程のモデリングについて学習する。
第10回 分枝・凝集現象のモデリング2 様々なシステムで観測される凝集現象について解説し、凝集過程のモデリングについて学習する。
第11回 相転移現象のモデリング1 相転移現象の基本モデルの特性とその理論解法について学ぶ。
第12回 非線形現象のモデリング2 輸送現象における渋滞のモデルと相転移について学習する。
第13回 相転移現象のモデリング3 自己組織臨界現象とそのモデルについて学ぶ。
第14回 複雑ネットワーク現象のモデリング1 複雑ネットワーク、隣接行列の特性、ネットワーク構造の特徴づけを学習する。
第15回 複雑ネットワーク現象のモデリング2 企業ネットワークのモデリングとシミュレーションの最新成果を紹介する。

教科書

特になし。

参考書、講義資料等

必要に応じて電子的に配布する。

成績評価の基準及び方法

講義内容の理解度を期末試験にもとづいて評価する。

関連する科目

  • MCS.T211 : 応用微分積分
  • MCS.T203 : 応用線形代数
  • MCS.T223 : 数理統計学
  • MCS.T212 : 確率論基礎

履修の条件(知識・技能・履修済科目等)

線形代数、微積分、確率・統計に関する基本的な知識・技能を有していること。

このページのトップへ