2020年度 応用AI・データサイエンスD   Advanced Artificial Intelligence and Data Science D

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
情報理工学院
担当教員名
三宅 美博  新田 克己  金崎 朝子  靍見 敏行  佐藤 亜希子  川本 史生  中川 慧  瀧川 孝幸 
授業形態
講義     
曜日・時限(講義室)
金9-10(Zoom)  
クラス
-
科目コード
XCO.T486
単位数
1
開講年度
2020年度
開講クォーター
4Q
シラバス更新日
2020年11月23日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

この授業科目は人工知能とデータサイエンスにおける社会実装の最前線を学ぶことを目標としている。
ビジネスにおけるAI開発、金融業におけるAI・データサイエンスの最前線で必要とされる技術の大枠を理解した上で、人工知能とデータサイエンスを活用する可能性について考察できるようデザインされている。
授業計画に示すとおり各回の授業において、講師がそれぞれのトピックに関する全体像と最近の動向を解説する。

到達目標

この授業科目は、人工知能とデータサイエンスに関する考察とそれぞれの着想を説明する機会を通じ、受講生が実社会において活躍する能力を高めることを目標にしている。

キーワード

人工知能、データサイエンス、AIビジネス、ユーザエクスペリエンス、FinTech、金融業、株価予測

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

この授業科目では、学生自らが能動的に学ぶことを重視します。各回の講義には必ず出席してください。

授業計画・課題

  授業計画 課題
第1回 金融分野におけるAI・データサイエンス① 金融時系列解析 過去の時系列データから将来株価の予測を行う時系列解析の開発事例を理解する。
第2回 金融分野におけるAI・データサイエンス② クロスセクション分析 時間軸をある1時点に固定して、その時点における様々な指標と将来株価との間に潜む関係性から株価を予測するクロスセクション分析の開発事例を理解する。
第3回 金融分野におけるAI・データサイエンス③ ポートフォリオ最適化 複数の投資候補から、投資対象を選別し、投資割合を最適化させるというポートフォリオ最適化の開発事例を理解する。
第4回 金融分野におけるAI・データサイエンス④ データ基盤の開発 データ利活用基盤に関する先端テクノロジーを理解する。
第5回 事例を通じた企画から見るAI開発 企画からユーザ利用まで一連の事例を通じて、AI開発に必要な視点を理解する
第6回 AI開発のためのプランニングのアプローチ (1) ユーザ起点のアプローチを通じて、AI開発に必要な視点を理解する
第7回 AI開発のためのプランニングのアプローチ (2) ユーザ起点のアプローチを通じて、AI開発に必要な視点を理解する

授業時間外学修(予習・復習等)

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

指定しない

参考書、講義資料等

講義資料は事前にOCW-iに掲載し、Zoom画面でも共有する。

参考図書

(数理ファイナンスの基礎)
 ファイナンスの理論と応用〈1〉資産運用と価格評価の要素 (石島博著、2015年6月) ISBN: 978-4817195548
 現代ファイナンス理論 (野口悠紀雄・藤井眞理子著、2005年6月) ISBN: 978-4492653319
 数理ファイナンス入門 – 離散時間モデル (StanleyR. Pliska著、2001年3月) ISBN: 978-4320096264

(クオンツ運用・トレード)
 計量アクティブ運用の全て – その理論と実際 (バークレイズグローバルインベスターズ著、2008年12月) ISBN: 978-4322113747
 アクティブ・ポートフォリオ・マネジメント - 運用戦略の計量的理論と実践 (リチャード・C. グリノル/ロナルド・N. カーン著、1999年10月) ISBN: 978-4492711255
 ファイナンス機械学習 – 金融市場分析を変える機械学習アルゴリズムの理論と実践 (マルコス・ロペス・デ・プラド、2019年12月) ISBN: 978-4322134636

(時系列解析)
 経済・ファイナンスデータの計量時系列分析 (沖本竜義著、2010年2月) ISBN: 978-4254127928
 New Introduction to Multiple Time Series Analysis (Helmut Luetkepohl著、2006年6月) ISBN: 978-3540262398
 カオス時系列解析の基礎と応用 (池口徹/小室 元政/山田 泰司著、2000年11月) ISBN: 978-4782810101
 ボラティリティ変動モデル (渡部敏明著、木島正明監修、2000年6月) ISBN: 978-4254275049

(ファクター投資)
 スマートベータの取扱説明書 (徳野明洋著、2017年9月) ISBN: 978-4492733448
 資産運用の本質 - ファクター投資への体系的アプローチ (アンドリュー・アング著、2016年4月) ISBN: 978-4322128314

成績評価の基準及び方法

期末試験は実施しない。技術的な理解度を問う毎回のレポートにより評価する。

関連する科目

  • XCO.T487 : 基盤データサイエンス
  • XCO.T488 : 基盤データサイエンス演習
  • XCO.T489 : 基盤人工知能
  • XCO.T490 : 基盤人工知能演習
  • XCO.T483 : 応用AI・データサイエンスA
  • XCO.T485 : 応用AI・データサイエンスC

履修の条件(知識・技能・履修済科目等)

なし

その他

本講義は、株式会社ネフロック、野村ホールディングス株式会社のご協力に基づいて開講される。
Zoomを用いたオンライン講義である。

このページのトップへ