H29年度 Advanced Course of Mechanical Vibration   Advanced Course of Mechanical Vibration

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
機械系3専攻
担当教員名
大熊 政明  岩附 信行  高原 弘樹 
授業形態
講義
曜日・時限(講義室)
月1-2(I124)  
クラス
-
科目コード
ZSK.D410
単位数
2
開講年度
H29年度
開講クォーター
3-4Q
シラバス更新日
H29年9月6日
講義資料更新日
-
使用言語
英語
アクセスランキング

講義の概要とねらい

【講義概要】
本講義では,機械振動,構造力学,音響,振動抑制に関する基本的な考え方や最近の展開を扱う.本講義の目的と講義計画を下記に示す.

【ねらい】
本講義を通して機械振動,構造力学,音響,振動抑制に関する基本的な考え方や最近の展開について学習する.

到達目標

本講義を履修することによって次の能力を修得する。
1)一自由度振動系の固有振動数,周波数応答,共振,伝達率(振動絶縁),複素振幅などを理解し,実際の振動問題に応用できる.
2)二自由度振動系の連成固有振動数,固有モードを理解し,モード解析の概念を説明できる.
3)動吸振器の原理を理解し,定点理論を使って動吸振器の最適パラメータを導出できる.
4)連続体の固有振動数と固有モードを説明できる.

キーワード

一自由度振動系の自由振動と強制振動,調和励振時の応答特性,二自由度振動系の連成固有振動数と固有モード,動吸振器,分布定数系

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - - -

授業の進め方

毎回の講義の前半で,復習を兼ねて前回の演習問題の解答を解説します。講義の後半で,その日の教授内容に関する演習問題に取り組んでもらいます.

授業計画・課題

  授業計画 課題
第1回 機械振動学の重要性と研究の歴史 機械振動学の重要性と研究の歴史を理解する.
第2回 1自由度不減衰振動系の運動方程式と自由振動 1自由度不減衰振動系の運動方程式,自由振動解,固有角振動数を導出する.
第3回 1自由度減衰振動系の運動方程式と自由振動 1自由度減衰振動系の運動方程式,自由振動解を導出する.また,臨界減衰および減衰固有角振動数について説明せよ.
第4回 1自由度振動系の理論と実験からのモデル化について 1自由度振動系の理論と実験からのモデル化について理解する.
第5回 1自由度振動系の振動抑制技術の基礎 1自由度振動系の振動抑制技術の基礎について理解する
第6回 2自由度振動系のモード解析 基準座標を用いて2自由度系の運動方程式を表す
第7回 2自由度振動系の強制振動解析 強制励振を受ける2自由度振動系の時刻歴応答と周波数応答を導出する
第8回 動吸振器 動吸振器の原理を説明し,定点理論を使って動吸振器の最適パラメータを導出する.
第9回 多自由度系のモード解析 多自由度系のモード解析について理解する
第10回 第6回から第9回までの内容についての理解度確認試験 第6回から第9回までの内容についての理解度確認試験を解く
第11回 連続体の振動 - 弦の横振動 弦の横振動の固有振動数と固有モードを計算する
第12回 連続体の振動 - はりの横振動 はりの横振動の固有振動数と固有モードを計算する
第13回 連続体の振動 - 長方形膜の横振動 弦の横振動の固有振動数と固有モードを計算する
第14回 連続体の振動 - 円形膜の横振動 弦の横振動の固有振動数と固有モードを計算する
第15回 第11回から第14回までの内容について理解度確認試験 第11回から第14回までの内容について理解度確認試験を解く

教科書

講義資料を配布する

参考書、講義資料等

McGraw-Hill Education (ISE Editions),『Fundamentals of vibrations』,ISBN13:978-0071219839
J. P. Den Hartog, "Mechanical vibrations"
大熊政明、構造動力学(Structual Dynamics)、朝倉書店

成績評価の基準及び方法

各講師担当分の中間試験と演習・講義レポートで総合的に評価する.

関連する科目

  • MEC.A201 : 工業力学
  • MEC.B211 : 常微分方程式
  • MEC.B212 : 複素関数論

履修の条件(知識・技能・履修済科目等)

特になし

オフィスアワー

メールで事前予約すること.

このページのトップへ