H31年度 集合と位相演習   Exercises in Set and Topology

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学科
担当教員名
KALMAN TAMAS  橋本 義規 
授業形態
演習
曜日・時限(講義室)
火5-8(H103)  火7-10(H103)  
クラス
-
科目コード
ZUA.B202
単位数
2
開講年度
H31年度
開講クォーター
1-2Q
シラバス更新日
H31年3月18日
講義資料更新日
-
使用言語
日本語
アクセスランキング

講義の概要とねらい

本科目は「集合と位相第一(ZUA.B201)」の演習である。「集合と位相第一」で扱われる講義の内容について、問題演習を行う。

到達目標

・ド・モルガンの法則を自由に使えるようになること
・与えられた写像が全射になるか、単射になるか、全単射になるか判定できるようになること
・与えられた写像の像と逆像を求められるようになること。
・同値関係と商集合の具体例を扱えるようになること
・連続の濃度と可算の濃度の違いを理解すること
・全順序と半順序の違いを理解すること
・整列集合の持つ強い性質を理解すること
・ツォルンの補題のいくつかの応用を理解すること
・整列可能定理、ツォルンの補題、選択可能公理の同値性を理解すること
・ユークリッド空間と距離空間における基本的な性質を理解すること

キーワード

集合、写像、像と逆像、直積集合、二項関係、同値関係、商集合、集合の濃度、可算濃度と非可算濃度
順序集合、全順序と半順序、整列集合、ツォルンの補題、選択公理、整列可能定理、ユークリッド空間、距離空間、連続写像

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - - -

授業の進め方

「集合と位相第一」で解説した内容に関する問題演習

授業計画・課題

  授業計画 課題
第1回 以下の内容に関する問題演習:集合の定義、例、和集合、共通部分、部分集合、補集合 講義中に指示する
第2回 以下の内容に関する問題演習:ド・モルガンの法則、分配法則、集合の間の写像 講義中に指示する
第3回 以下の内容に関する問題演習:像と逆像、写像の合成、直積集合 講義中に指示する
第4回 以下の内容に関する問題演習:集合の間の対応、添え字づけられた集合族 講義中に指示する
第5回 以下の内容に関する問題演習:二項関係、同値関係、同値類、商集合 講義中に指示する
第6回 以下の内容に関する問題演習:集合の濃度、濃度の大小関係、可算集合 講義中に指示する
第7回 以下の内容に関する問題演習:連続の濃度、非可算集合、巾集合の濃度 講義中に指示する
第8回 理解度確認 講義中に指示する
第9回 以下の内容に関する問題演習:順序関係、全順序、整列集合、整列集合に関する基本性質 講義中に指示する
第10回 以下の内容に関する問題演習:帰納的順序集合、ツォルンの補題 講義中に指示する
第11回 以下の内容に関する問題演習:順序数、濃度の比較定理 講義中に指示する
第12回 以下の内容に関する問題演習:整列可能定理、整列可能定理と選択公理の同値性 講義中に指示する
第13回 以下の内容に関する問題演習:ツォルンの補題の応用例 講義中に指示する
第14回 以下の内容に関する問題演習:ユークリッド空間、距離空間、開集合と閉集合 講義中に指示する
第15回 以下の内容に関する問題演習:距離空間における基本的概念 講義中に指示する

教科書

「集合と位相」内田伏一著 裳華房 (1986年)

参考書、講義資料等

「集合と位相」斎藤毅著 東京大学出版会 (2009年)
「集合・位相入門」松坂和夫著 岩波書店 (1968年)
「集合と位相空間」森田茂之著 朝倉書店 (2002年)

成績評価の基準及び方法

小テスト (およそ30%), 演習問題の解答状況 (およそ70%)

関連する科目

  • ZUA.B201 : 集合と位相第一
  • MTH.B201 : 位相空間論第一
  • MTH.B202 : 位相空間論第二

履修の条件(知識・技能・履修済科目等)

微分積分学第一・演習、微分積分学第二、同演習、線形代数学第一・演習、線形代数学第二、同演習を履修済みであることが望ましい。
「集合と位相第一」を同時に履修することが強く推奨される(未履修の場合)

このページのトップへ