2021年度 数学最先端特別講義Q   Special lectures on current topics in Mathematics Q

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学コース
担当教員名
久野 雄介  野坂 武史 
授業形態
講義    (ZOOM)
曜日・時限(講義室)
集中講義等   
クラス
-
科目コード
MTH.E646
単位数
2
開講年度
2021年度
開講クォーター
3Q
シラバス更新日
2021年3月19日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

ゴールドマン・リー代数と呼ばれる、向きづけられた曲面に付随する(無限次元)リー代数について述べる。このリー代数は曲面上の曲線の交叉を用いて記述され、低次元トポロジーの対象といって良いものであるが、その背景には曲面上の平坦束のモジュライ空間という幾何的なものがある。本講義では、ゴールドマン・リー代数の定義について周辺事項と共に説明した後に、次の二つのテーマを解説する。(1)デーンツイストと呼ばれる曲面の自己微分同相写像のゴールドマン・リー代数を用いた記述。(2)ゴールドマン括弧積(およびトュラエフ余括弧積)の形式性と呼ばれる性質。
  曲面上の曲線たちの交叉の様子から興味深い代数的構造が抽出され、それを用いて曲面上の自己微分同相写像や曲面の写像類群を調べられることを説明したい。

到達目標

・ゴールドマン・リー代数の定義を理解すること。
・デーンツイストの対数の記述を理解すること。
・シンプレクティック展開の定義を理解すること。
・トュラエフ余括弧積の定義を理解すること。
・ゴールドマン括弧積とトュラエフ余括弧積の形式性を理解すること。

キーワード

ゴールドマン括弧積、トュラエフ余括弧積、デーンツイスト、曲面の写像類群

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

通常の講義形式で行う.また,適宜レポート課題を出す.

授業計画・課題

  授業計画 課題
第1回 以下の内容について講義する予定である。 ・曲面の基本群とホモロジー群 ・有限階数自由群の降中心列と付随するリー代数 ・ゴールドマン括弧積 ・デーンツイストの対数の記述 ・一般デーンツイスト ・シンプレクティック展開 ・トュラエフ余括弧積 ・ゴールドマン括弧積とトュラエフ余括弧積の形式性 講義中に指示する

教科書

適宜参考文献を講義中に紹介する

参考書、講義資料等

適宜参考文献を講義中に紹介する

成績評価の基準及び方法

レポート課題(100%)による.

関連する科目

  • ZUA.E334 : 数学特殊講義D

履修の条件(知識・技能・履修済科目等)

トポロジーの基本事項を習得していることが望ましい.

その他

Not in particular

このページのトップへ