2019年度 幾何学特論H1   Advanced topics in Geometry H1

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学コース
担当教員名
KALMAN TAMAS 
授業形態
講義
メディア利用
 
曜日・時限(講義室)
金5-6(H117)  
クラス
-
科目コード
MTH.B508
単位数
1
開講年度
2019年度
開講クォーター
4Q
シラバス更新日
2019年3月18日
講義資料更新日
-
使用言語
英語
アクセスランキング
media

講義の概要とねらい

本講義では、結び目、絡み目、三次元多様体、Alexander 多項式、Morse 理論、Floer ホモロジー等の概念を理解するとともに、基本的な性質を自力で証明できることを目標とする。Floer ホモロジーは現代位相幾何学および周辺科学における先進的な分野であり、適用範囲の広い概念である。本講義では Heegaard Floer homology とその応用を学ぶ。

到達目標

この講義の目的は、受講生が研究を始められるよう、低次元トポロジーにおける重要事項を解説することである。

キーワード

結び目、絡み目、三次元多様体、Alexander 多項式、種数とファイバー性、Morse 理論、Floer ホモロジー

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

通常の授業

授業計画・課題

  授業計画 課題
第1回 コンパクト性 (broken flow lines)、Morse 複体、貼り合わせ 定義と性質の確認
第2回 Morse ホモロジーと特異ホモロジーとの同型 定義と性質の確認
第3回 シンプレクティック幾何学、ラグランジュ部分多様体、action functional 定義と性質の確認
第4回 擬正則曲線、ラグランジュ部分多様体の交叉理論、Maslov 指数 定義と性質の確認
第5回 Heegaard 図式、spin^c 構造 定義と性質の確認
第6回 閉多様体の Heegaard Floer ホモロジー 定義と性質の確認
第7回 d^2=0 や不変性、結び目 Floer ホモロジーの最初の定義 定義と性質の確認
第8回 sutured Floer homology、種数およびファイバー性の決定の証明 定義と性質の確認

教科書

特になし.必要に応じて講義資料を配布する.

参考書、講義資料等

講義の概略として, Juhasz 氏の論文 (arXiv:1310.3418) と Manolescu 氏の論文 (http://arxiv.org/abs/1401.7107) を使う。
Morse 理論については, Hutchings 氏の講義ノートが参考になる。(http://math.berkeley.edu/~hutching/teach/276-2010/mfp.ps)

成績評価の基準及び方法

レポート課題による

関連する科目

  • MTH.B202 : 位相空間論第二
  • MTH.B301 : 幾何学第一
  • MTH.B302 : 幾何学第二

履修の条件(知識・技能・履修済科目等)

代数トポロジー(ホモロジー、コホモロジー、基本群等)を仮定する。基本的な複素解析を知っていることが望ましい。「幾何学特論G1」を履修していること。

その他

予備知識を気にせず、わからないことは率直に聞いてください。

このページのトップへ