2021年度 幾何学概論第二   Introduction to Geometry II

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数学系
担当教員名
山田 光太郎 
授業形態
講義    (ZOOM)
曜日・時限(講義室)
木3-4(H112)  
クラス
-
科目コード
MTH.B212
単位数
1
開講年度
2021年度
開講クォーター
4Q
シラバス更新日
2021年3月19日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

MTH.B211 幾何学概論第一に続き,主に以下の事項を学ぶ:
正則曲面のパラメータ表示,第一基本形式・⻑さ・角度・面積,第二基本形式・主曲率・Gauss曲率・平均曲率,測地線,Gauss-Bonnetの定理,曲面論の基本定理の意味.古典的な曲面の微分幾何学の基本事項を身につけるとともに,現代の微分幾何学を学ぶための準備を行う.

到達目標

3次元ユークリッド空間内の曲面の微分幾何学の基本的な事項,とくに,曲面の曲率の概念と,その幾何学的な性質を学ぶ.
(1) 曲面のパラメータ表示とパラメータ変換,パラメータによらない量の概念を知る.
(2) 曲面の曲率と曲面の形状の関係を知る.
(3) 曲面の大域的性質と局所的性質の具体例を知る.
(4) 理論の具体例を計算によって確認する.

キーワード

微分幾何学・曲面・Gauss曲率・平均曲率・Gauss-Bonnetの定理.

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

毎回の講義にて (1) 講義内容に関連する問題を解く (2) 講義内容に関する質問あるいは講義資料等の誤りの指摘,の2つからなる課題を与える.これを材料に講義を組み立てる.

授業計画・課題

  授業計画 課題
第1回 Gauss曲率・平均曲率(第一基本量,第二基本量) 講義中に指示する.
第2回 パラメータ不変性(第一基本形式,第二基本形式) 講義中に指示する.
第3回 Weingarten の公式(主曲率) 講義中に指示する.
第4回 Gaussの公式(Christoffel 記号) 講義中に指示する.
第5回 曲面論の基本定理(驚異の定理) 講義中に指示する.
第6回 測地線(Gauss-Bonnet の定理) 講義中に指示する.
第7回 理解確認 講義中に指示する.

授業時間外学修(予習・復習等)

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うことだそうです.

教科書

梅原雅顕・山田光太郎「曲線と曲面(改訂版)」裳華房

参考書、講義資料等

小林昭七「曲線と曲面の微分幾何」裳華房

成績評価の基準及び方法

2020年度と評価方法を変える予定.最初の講義で詳細を説明する.

関連する科目

  • MTH.B211 : 幾何学概論第一
  • LAS.M102 : 線形代数学第一・演習
  • LAS.M106 : 線形代数学第二
  • LAS.M101 : 微分積分学第一・演習
  • LAS.M105 : 微分積分学第二

履修の条件(知識・技能・履修済科目等)

MTH.B211 幾何学概論第一を履修しているか,内容を理解していること.

連絡先(メール、電話番号)    ※”[at]”を”@”(半角)に変換してください。

kotaro[at]math.titech.ac.jp

オフィスアワー

設定しない.
必要に応じて教室か電子メイルでコンタクトをとること.

その他

【講義がオンラインか対面かにより,評価方法,授業の進め方が異なる可能性がある.開講時期が近づいたら連絡するので注意すること】
詳細は講義 web ページおよびT2Scholaを参照のこと.
Webページ:http://www.math.titech.ac.jp/~kotaro/class/2021/geom-2/index-jp.html
なお OCW/OCW-i は動作が不安定なため,今年度は講義資料を掲載しない.

関連する科目は,記入欄が少ないので直接関連する科目のみを挙げた.その他に微分方程式概論第一,微分方程式概論第二, 位相空間論第一,位相空間論第二,位相空間論第三,位相空間論第四, 幾何学第一,幾何学第二,幾何学続論, 複素解析第一,複素解析第二などの科目と関連がある.

このページのトップへ