2020年度 微分積分学演習第二 O(21~30)   Calculus Recitation II O(21~30)

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
理工系教養科目
担当教員名
三浦 達哉 
授業形態
演習
メディア利用
Zoom
曜日・時限(講義室)
  
クラス
O(21~30)
科目コード
LAS.M107
単位数
1
開講年度
2020年度
開講クォーター
4Q
シラバス更新日
2020年7月17日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

「微分積分学第一」の内容を踏まえ、数列や関数の極限、一変数関数の微分法や多変数関数の偏微分の応用、級数および関数列について,より厳密な数学的取り扱いについて演習を行う。

 本演習のねらいは、理工学にとって重要な解析学について,より深く理解させることにある.

到達目標

「微分積分学第一・演習」に引き続き,微積分学の内容の理解を深め,発展させる.

実務経験のある教員等による授業科目等

-

キーワード

極限,連続性,テイラーの定理,級数,関数列

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

講義の進度に合わせて毎週1回演習を行う.

授業計画・課題

  授業計画 課題
第1回 実数の連続性,上限,下限 実数の連続性,上限,下限についての理解を深める.
第2回 数列の極限,単調列,コーシー列 実数についての理解を深める.
第3回 一変数関数の極限,連続性,最大値,中間値の定理,微分,平均値の定理,不定形の極限 一変数関数の解析的性質についての理解を深める.
第4回 テイラーの定理,極値,定積分 テイラーの定理と極値についての理解を深める.
第5回 平面上の点集合,点列,多変数関数,偏微分,多変数のテイラーの定理 多変数関数の解析的性質についての理解を深める.
第6回 級数,絶対収束,条件収束 級数についての理解を深める.
第7回 関数列,関数項級数,べき級数 関数列,関数項級数,べき級数についての理解を深める.

教科書

微積分学第二 Oクラスの教科書に準ずる

参考書、講義資料等

微積分学第二 Oクラスの参考書に準ずる

成績評価の基準及び方法

小テスト,レポート課題,中間試験,期末試験などの結果を総合的に判断する.詳細は講義中に指示する.

関連する科目

  • LAS.M101 : 微分積分学第一・演習
  • LAS.M105 : 微分積分学第二

履修の条件(知識・技能・履修済科目等)

微分積分学第一・演習 (LAS.M101) を履修済みであることを前提とする.

その他

特になし.

このページのトップへ