2019 Fundamentals of Electromagnetism 2 G

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Basic science and technology courses
Munekata Hiro 
Course component(s)
Day/Period(Room No.)
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

Following Fundamentals of Electromagnetism 1, this course covers static magnetic fields, changing electromagnetic fields, Maxwell’s equations, and electromagnetic waves.

Electromagnetism is important for understanding nature, and is essential for the study of science, engineering, life sciences, and other specialized courses. Students will learn the basic laws of electromagnetism in vacuum, and their mathematical descriptions. This will allow them to understand general electromagnetic phenomena as well as allow them to solve general problems in electromagnetism.

Student learning outcomes

By completing this course, students will be able to:
1) Understand the concepts of induced electromotive force, induced electric field, self-induction, mutual induction, magnetic energy, displacement current, etc., correctly, and describe them mathematically.
2) Understand Gauss's law for magnetic flux density, Ampére’s law, Faraday's law and Maxwell-Ampére’s law correctly, and apply them to solve problems in electromagnetism.
3) Understand electromagnetic waves on the basis of Maxwell’s equations.
4) Find mathematical solutions to problems in electromagnetism expressed by the appropriate equations, and explain the physical meaning of said solutions.


Gauss's law, Ampére’s law, electromagnetic induction, Faraday's law, induced electromotive force, induced electric field, self-inductance, mutual inductance, magnetic energy, displacement current, Maxwell-Ampére’s law, Maxwell’s equations, electromagnetic waves

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Two-thirds of each class is devoted to fundamentals and the rest to advanced content or application. To allow students to get a good understanding of the course contents and practice application, problems related to the contents of this course are provided in Exercises in Physics II.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Electromagnetic induction (Faraday's law, induced electromotive force, induced electric field) Explain electromagnetic induction. Explain Faraday law by mathematical equation.
Class 2 Magnetic flux density resulting from changing electric fields. Displacement current Explain the difference between real and displacement currents.
Class 3 Self-induction and mutual induction, magneto-static energy Find similarity and difference between electrostatic and magneto-static energies.
Class 4 Maxwell’s equations (integral forms), speed of light Explain why the speed light is constant in a free space.
Class 5 Basic laws of electromagnetism: divergence and rotation of vector functions. Show differential forms of four basic laws of electromagnetism expressed in integral forms.
Class 6 Maxwell’s equations (differential forms), electromagnetic waves (part 1) Derive electromagnetic plane waves from Maxwell’s equations.
Class 7 Electromagnetic waves (part 2), introduction to relativism Explain electromagnetic energy with mathematical forms.


Denjikigaku (Electromagnetism) by Hidekazu Tanaka, Baifukan Publishing

Reference books, course materials, etc.

Denjikigaku (Electromagnetism) by Masatoshi Nakayama, Shokabo Publishing

Assessment criteria and methods

Learning achievement is evaluated by homework and a final exam.

Related courses

  • LAS.P106 : Exercises in Physics II

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites.

Page Top