### 2016　Fundamentals of Electromagnetism 1

Font size  SML

Academic unit or major
Basic science and technology courses
Instructor(s)
Tanaka Hidekazu
Class Format
Lecture
Media-enhanced courses
Day/Period(Room No.)
Fri1-2(W621)
Group
J
Course number
LAS.P103
Credits
1
2016
Offered quarter
3Q
Syllabus updated
2016/4/27
Lecture notes updated
-
Language used
Japanese
Access Index ### Course description and aims

The course teaches the basics of static electric and magnetic fields in vacuum, starting with Coulomb’s force law for charges.

Electromagnetism is important for understanding nature, and is essential for the study of science, engineering, life sciences, and other specialized courses. Students will understand how electric and magnetic fields are produced by charges and current, respectively, and their mathematical descriptions. This will allow them to understand static electromagnetic phenomena as well as allow them to solve basic problems in electromagnetism.

### Student learning outcomes

By completing this course, students will be able to:
1) Understand the concepts of electric field, electric potential, electrostatic energy, magnetic flux density, magnetic moment, etc., correctly, and describe them mathematically.
2) Understand Gauss's law for electric fields and the Biot-Savart law for magnetic fields correctly, and find the electric field and magnetic flux density by applying said laws.
3) Find mathematical solutions to problems in electromagnetism expressed by the appropriate equations, and explain the physical meaning of said solutions.

### Keywords

Coulomb’s law, electric field, Gauss's law, electric potential, conductor, condenser, capacitance, electrostatic energy, electric current, magnetic force, magnetic flux density, magnetic moment, Biot-Savart law

### Competencies that will be developed

 ✔ Specialist skills Intercultural skills Communication skills Critical thinking skills ✔ Practical and/or problem-solving skills

### Class flow

Two-thirds of each class is devoted to fundamentals and the rest to advanced content or application. To allow students to get a good understanding of the course contents and practice application, problems related to the contents of this course are provided in Exercises in Physics II.

### Course schedule/Required learning

Course schedule Required learning
Class 1 Coulomb's law and electric field (principle of conservation of charge, force between charges, introduction of electric field) Explain the concept of electric field.
Class 2 Electric field and Gauss law (calculation of electric field, derivation of Gauss law) Explain Gauss law on electric field.
Class 3 Application of Gauss law (calculation of electric field using Gauss law) Show an example of the application of Gauss law.
Class 4 Electric potential (introduction and calculation of electric potential, relation between electric potential and electric field) Explain the relation between electric potential and electric field.
Class 5 Conductor (electric fields around conductor, electric shielding) Explain electric potential and electric field in a conductor in an equilibrium state.
Class 6 Condenser and electrostatic energy (capacitance, energy stored in electric field) Explain the energy shored in electric field between two plates of parallel-plate capacitor.
Class 7 Electric current and magnetic force between currents (electric current density, magnetic flux density, magnetic momen Explain force between two parallel wires carrying current.
Class 8 Biot-Savart law (calculation of magnetic flux density using Biot-Savart law) Explain Biot-Savart law.

### Textbook(s)

Hidekazu Tanaka: Introductory Course in Electromagnetism; Baifukan

Unspecified.

### Assessment criteria and methods

Learning achievement is evaluated by a final exam.

### Related courses

• LAS.P106 ： Exercises in Physics II

### Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites. 