2016 Fundamentals of Mechanics 1

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Basic science and technology courses
Tilma Todd 
Class Format
Media-enhanced courses
Day/Period(Room No.)
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

The course teaches the fundamentals of particle motion starting with the equations of motion that describe the motion of an object.
Mechanics is important for understanding nature, and is essential for the study of science, engineering, life sciences, and other specialized courses. Students will learn the laws of motion and the mathematical description of motion. This will allow them to understand particle mechanics and they will be able to solve most general problems in mechanics.

Student learning outcomes

By completing this course, students will be able to:
1) Understand the concepts of velocity, acceleration, force, momentum, angular momentum, torque, work, energy, etc., correctly, and describe them mathematically.
2) Understand the laws of motion — the laws of conservation of momentum, angular momentum, and energy that are derived from the laws of motion — correctly, and solve actual mechanical problems by applying these laws.
3) Find mathematical solutions to problems in mechanics, expressed by the appropriate equations, and explain the physical meaning of said solutions.


position, velocity, acceleration, momentum, force, laws of motion, law of conservation of momentum, free fall, simple harmonic motion, parabolic motion, work, kinetic energy, potential energy, law of conservation of energy, central force, angular momentum, torque, law of conservation of angular momentum, universal gravitation, Kepler's laws

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Two-thirds of each class are devoted to fundamentals and the rest to advanced content or application. To allow students to get a good understanding of the course contents and practice application, problems related to the contents of this course are provided in Exercises in Physics I.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Description of motion (position, velocity, acceleration) Explain position, velocity, and acceleration using vectors.
Class 2 Linear motion (free fall, simple harmonic motion, simple pendulum) Explain typical linear motions such as free fall and simple harmonic motion.
Class 3 Motion in a plane (parabolic motion, damped harmonic oscillation, and driven harmonic oscillation) Explain damped harmonic oscillation and driven harmonic oscillation in addition to planar motion such as parabolic motion.
Class 4 Newton’s three laws of motion (law of inertia, equation of motion, law of action and reaction) Explain Newton’s three laws of motion and express motion using the equations of motion.
Class 5 Work and energy (kinetic energy, conservative force and potential energy), law of conservation of energy Explain the concepts of work, kinetic energy, and potential energy, and the law of conservation of energy.
Class 6 Angular momentum and torque (vector product) Explain the concepts of angular momentum and torque, and express them using the vector product.
Class 7 Motion under a central force (law of conservation of angular momentum, description of velocity and acceleration in terms of polar coordinates) Explain the law of conservation of angular momentum and the motion of a particle under a central force, and express motion using polar coordinates.
Class 8 Newton's law of universal gravitation and planetary motion (Kepler’s laws) Explain the motion of a particle under universal gravitation and Kepler’s laws of planetary motion.


東京化学同人 (March 1, 2013)
ISBN : 978-4807908301

Reference books, course materials, etc.

Reference Books :

"力学" by 戸田盛和  著
"Principles of Physics: A Calculus-Based Text, 5th Edition" by Serway
"Classical Mechanics" by Taylor
"Classical Dynamics - A Contemporary Approach" by Jose and Saletan

Additional course material can be found on the class OCW-i page.

Assessment criteria and methods

Learning achievement is evaluated by a final exam.

Related courses

  • LAS.P105 : Exercises in Physics I

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites.


Students’ course scores are based on tests (30%), final exam (50%), and exercise problems (20%).

Page Top