H28年度 微分積分学第二 O(21〜30)   Calculus II

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
理工系教養科目
担当教員名
利根川 吉廣 
授業形態
講義
曜日・時限(講義室)
火3-4(H101)  木1-2(H101)  
クラス
O(21〜30)
科目コード
LAS.M105
単位数
2
開講年度
H28年度
開講クォーター
4Q
シラバス更新日
H29年1月11日
講義資料更新日
-
使用言語
日本語
アクセスランキング

講義の概要とねらい

 「微分積分学第一」の内容を踏まえ、数列や関数の極限、一変数関数の微分法や多変数関数の偏微分の応用、級数および関数列について,より厳密な数学的取り扱いについて解説する。

 本講義のねらいは、理工学にとって重要な解析学の知識を与えることにある.

到達目標

「微分積分学第一・演習」に引き続き,微積分学の内容の理解を深め,発展させる.

キーワード

極限,連続性,テイラーの定理,級数,関数列

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - - -

授業の進め方

講義の他に,講義の進度に合わせて毎週1回演習を行う.

授業計画・課題

  授業計画 課題
第1回 数列の極限,上限,下限 数列に関連した事項について理解する.
第2回 平面上の点集合,点列 点集合の定義と性質について理解する.
第3回 実数の連続性,単調列,コーシー列 実数の連続性と関連した事項について理解する.
第4回 一変数関数の極限,連続性,最大値,中間値の定理 連続関数の性質について理解する.
第5回 多変数関数の極限,連続性 多変数関数の極限と連続性について理解する.
第6回 微分,ロルの定理,平均値の定理 微分可能な関数の性質を理解する.
第7回 不定形の極限,ロピタルの定理 不定形の極限の求め方について理解する.
第8回 テーラーの定理 テイラーの定理について理解する.
第9回 偏微分,偏導関数,多変数のテイラーの定理 多変数関数の偏微分について理解する.
第10回 極値 極値の性質について理解する.
第11回 定積分,微積分学の基本定理 定積分について理解する.
第12回 級数,絶対収束,条件収束 級数とその収束について理解する.
第13回 級数の収束の判定 級数の収束判定法について理解する.
第14回 関数列,関数項級数 関数の列と級数について理解する.
第15回 発展的内容 解析学に関連した発展的内容について理解する.

教科書

数学シリーズ 微分積分学 難波誠 著

参考書、講義資料等

特になし.

成績評価の基準及び方法

小テスト,レポート,中間試験,期末試験などの結果を総合的に判断する.詳細は講義中に指示する.

関連する科目

  • LAS.M101 : 微分積分学第一・演習
  • LAS.M107 : 微分積分学演習第二

履修の条件(知識・技能・履修済科目等)

微分積分学第一・演習 (LAS.M101) を履修済みであることを前提とする.
微分積分学演習第二 (LAS.M107) を同時に履修すること.

その他

特になし.

このページのトップへ