2020年度 数理情報分析基礎 I   Methodology of Mathematical and Computational Analysis I

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
技術経営専門職学位課程
担当教員名
梶川 裕矢  中丸 麻由子 
授業形態
講義 / 演習
メディア利用
Zoom
曜日・時限(講義室)
土5-6(CIC812)  
クラス
-
科目コード
TIM.A405
単位数
1
開講年度
2020年度
開講クォーター
1Q
シラバス更新日
2020年10月26日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

本講義では、統計分析、機械学習や計量書誌分析などの技術経営に関する定量的なデータ・情報分析技術の理論と分析事例の講義を行う。本講義を通じて、技術経営を学習ならびに研究を行う上で必要な分析リテラシーを習得することを目的とする。
 ビッグデータがビジネスのキーワードとなる現代において、データ分析の方法論を学び、スキルを身につけることは、企業にとっても個人にとっても、差別化の要素となり得る。本講座ではデータ分析の方法論を、具体例や実際の演習問題も合わせて学ぶことで、分析のための基礎知識の習得に加え、データ分析を経営判断やビジネスに活用するための方法についても講義を行う。

到達目標

本講義を履修することによって次のことを理解する。
1) 統計分析や機械学習を用いた数値解析手法の留意点と手法間の相違
2) ネットワーク分析ならびにテキスト分析などの非構造化データの分析手法
3) 論文や特許などの技術経営に関する調査研究を実施する上で重要なデータの取り扱い方
また、演習を通じて、
4) グローバルな研究動向の把握した上で新たな研究開発テーマや戦略を企画・起案する力
を修得することを目標とする。

キーワード

統計分析、機械学習、テキスト分析、ネットワーク分析、研究企画、研究開発戦略

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

第1回にグループ分けを行うので出席すること。第7回のグループ発表を除き、全て座学で、データサイエンスの全体像、理論、手法、課題を浴びるようにインプットする。それを踏まえてグループワークならびにレポートに取り組むこと。

授業計画・課題

  授業計画 課題
第1回 ガイダンス 講義概要と目的の理解
第2回 統計分析概論 データサンプリング、統計分析と検定手法の理解
第3回 機械学習概論 機械学習を用いたモデル化の目的と方法論の理解
第4回 非構造化データの分析 ネットワーク分析、テキスト分析、クラスタリング、可視化手法の理解
第5回 企業におけるデータ分析の実際(1) データ分析を技術経営に実践する上での課題について学ぶ
第6回 データ分析演習(1) 分析ツールを用いたデータ分析の演習
第7回 データ分析演習(2) 分析ツールを用いたデータ分析の演習

授業時間外学修(予習・復習等)

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

指定しない

参考書、講義資料等

指定しない

成績評価の基準及び方法

レポート(100%)

関連する科目

  • TIM.B412 : R&D戦略 I
  • TIM.B413 : R&D戦略 II
  • TIM.D401 : リサーチリテラシー演習 I
  • TIM.D402 : リサーチリテラシー演習 II

履修の条件(知識・技能・履修済科目等)

履修の条件を設けない

このページのトップへ