2017 Graduate Lecture in Cognition, Mathematics and Information F1A

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Social and Human Sciences
Instructor(s)
Inohara Takehiro 
Class Format
Lecture     
Media-enhanced courses
Day/Period(Room No.)
Mon5-6(W9-707)  
Group
-
Course number
SHS.M443
Credits
1
Academic year
2017
Offered quarter
3Q
Syllabus updated
2017/9/6
Lecture notes updated
2017/9/22
Language used
Japanese
Access Index

Course description and aims

The main topic of this course is "discrete structures". We will deal with the basic concepts and applications of discrete structures through discussions, group work, lectures, and exercises. By providing students with definitions, examples, and analysis methods for "graphs", "combinatorial analysis", "algebraic systems", "formal languages", "ordered sets", "propositional calculus", and "Boolean algebra", students will hone the skills to mathematically represent and analyze discrete structures.

The purpose of this course is for students to hone the skills to select the appropriate discrete structure for representing and analyzing a given object, to represent the object as a discrete structure, to analyze the discrete structure to derive results, and to concisely communicate to others the results of analyzing discrete structures.

Student learning outcomes

Upon completion of this course, students should be able to:
1) State the definitions of discrete structures using examples of objects described by discrete structures;
2) Apply analysis methods to examples of objects described by discrete structures, and explain the analysis results to others;
3) Select an appropriate discrete structure and describe a focal object; and
4) Apply analysis methods to an object described by a discrete structure, and explain the analysis results to others.

Keywords

graphs, combinatorial analysis, algebraic systems, formal language, ordered sets, propositional calculus, Boolean algebra

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

One class deals with one discrete structure.

The students examine examples of objects which can be described by a discrete structure, first individually, second in pairs, then in groups of four, and finally with the class as a whole. Then a lecture on the discrete structure is presented, and the students work on exercise problems. At the end of the class, each student writes and submits a “summary report” on what he/she learned through individual observation, other students’ ideas, the lecture, and exercise problems.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Planar graphs, coloring and trees State the definitions of planar graphs, coloring and trees
Class 2 Directed graphs and finite automata State the definitions of directed graphs and finite automata
Class 3 Signed graphs and balanced-ness State the definitions of signed graphs and balanced-ness
Class 4 Combinatorial analysis State the definition of combinatorial analysis
Class 5 Algebraic systems State the definitions of algebraic systems
Class 6 Formal languages State the definitions of algebraic systems
Class 7 Ordered sets and lattices State the definitions of ordered sets and lattices
Class 8 Propositional calculus and Boolean algebra State the definitions of propositional calculus and Boolean algebra

Textbook(s)

Seymour Lipschutz and Marc Lipson, “2000 Solved Problems in Discrete Mathematics, ” The McGraw-Hill Companies, Inc., 1992 (ISBN-10: 0070380317, ISBN-13: 978-0070380318)

Reference books, course materials, etc.

Course materials are posted on OCW-i and/or provided during the classes.

Assessment criteria and methods

Assessment will be based on “summary reports” written during each class (50% in total) and the final examination (50%).

Related courses

  • SHS.M442 : Graduate Lecture in Cognition, Mathematics and Information S1B
  • SHS.M444 : Graduate Lecture in Cognition, Mathematics and Information F1B
  • SHS.M461 : Graduate Methodologies in Cognition, Mathematics and Information S1
  • SHS.L411 : Trans-disciplinary Exercise in Social and Human Sciences S1A
  • SHS.L412 : Trans-disciplinary Exercise in Social and Human Sciences S1B

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Students must have successfully completed “Trans-disciplinary Exercise in Social and Human Sciences S1A (Basics of Logic and Set Theory)” and “Trans-disciplinary Exercise in Social and Human Sciences S1B (Basics of Metric, Convergence and Continuity)” or have equivalent knowledge.

Contact information (e-mail and phone)    Notice : Please replace from "[at]" to "@"(half-width character).

Takehiro Inohara, inostaff[at]shs.ens.titech.ac.jp

Office hours

Instructor’s office: Rm. 813, 8 Fl., West Bldg. 9. Contact by e-mail in advance to schedule an appointment.

Other

This course consists of the content of science.

Page Top