2016 Engineering Measurement

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Transdisciplinary Science and Engineering
Instructor(s)
Akita Daisuke  Takada Jun-Ichi  Takahashi Kunio  Nakasaki Kiyohiko  Iio Shunji  Hayashizaki Noriyosu    Bin Abdul Aziz Azril Haniz 
Class Format
Lecture     
Media-enhanced courses
Day/Period(Room No.)
Tue5-6(S513)  Fri5-6(S513)  
Group
-
Course number
TSE.A231
Credits
2
Academic year
2016
Offered quarter
3Q
Syllabus updated
2016/4/27
Lecture notes updated
-
Language used
English
Access Index

Course description and aims

It is essential to measure things accurately and to understand their engineering characteristics for successful use. This course focuses on understanding the fundamental principles in the measurement of physical quantities which are important in engineering, and covers basic electric and electronic circuits and applied analytical instruments. Additionally, this course allows students to understand the preconditions for measurements, differences between theory and reality, accuracy and error, and relation of measurement to design.
This is an introductory course to understand the importance of other courses in the Department of Trans-disciplinary Science and Engineering.

Student learning outcomes

Students will be able to understand the concepts of accuracy, error, noise, standard, uncertainty, and the measurement principles of physical quantities and analytical instruments in this course, so that they can have the ability to understand the real meaning of measurement results. This course does not however include proficiency in the operation of measurement instruments.

Keywords

Measurement, Accuracy, Error, Electric and Electronic Circuit, Analysis

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Omnibus lectures by six instructors.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Introduction and Error Theory (Noise, Accuracy・Resolution, Standard, Uncertainty) (Takada) Explain the error.
Class 2 Operational Amplifier (Takada) Explain the operational amplifier.
Class 3 Counter Circuit (Takada) Explain the counter circuit.
Class 4 Current, Voltage, High-Frequency Wave (Iio) Explain the measurement principle of current, voltage, high-frequency wave.
Class 5 Electric Field, Magnetic Field, Light and Electromagnetic Wave (Iio) Explain the measurement principle of electric field, magnetic field, light and electromagnetic wave.
Class 6 Position, Displacement, Distance, Velocity, Acceleration (Takahashi) Explain the measurement principle of position, displacement, distance, velocity, acceleration.
Class 7 Mass, Force, Pressure, Fluid (Akita) Explain the measurement principle of mass, force, pressure, fluid.
Class 8 Energy, Temperature (Hayashizaki) Explain the measurement principle of energy, temperature.
Class 9 Radiation (Hayashizaki) Explain the measurement principle of radiation.
Class 10 Shape (1) (Optical Microscope, Scanning Probe Microscope, Surface Roughness Meter) (Takahashi) Explain the optical microscope, scanning probe microscope, surface roughness meter.
Class 11 Shape (2) (Scanning Electron Microscope, Transmission Electron Microscope) (Lecturer) Explain the scanning electron microscope, transmission electron microscope.
Class 12 Elemental Analysis (1)(EPMA,EDS(X),XPS(ESCA),AES,etc.)(Lecturer) Explain the EPMA,EDS(X),XPS(ESCA),AES.
Class 13 Elemental Analysis (2)(X-ray Diffraction,EBSP,RBS,etc.)(Lecturer) Explain the X-ray Diffraction,EBSP,RBS.
Class 14 Chemical Analysis (1)(FTIR, ICP, Raman Spectrometry,etc.)(Lecturer) Explain the FTIR, ICP, Raman Spectrometry.
Class 15 Chemical Analysis (2)(Chromatography,etc.)(Lecturer) Explain Chromatography.

Textbook(s)

Text book specified by each instructor.

Reference books, course materials, etc.

Each instructor will provide a handout.

Assessment criteria and methods

Achievement of student learning outcome will be evaluated with results of reports (50%) and exam (50%).

Related courses

  • TSE.M204 : Statistics and Data Analysis
  • TSE.A351 : Transdisciplinary Engineering Experiment A
  • TSE.A352 : Transdisciplinary Engineering Experiment B
  • TSE.A203 : Electrical Engineering
  • TSE.M201 : Ordinary Differential Equations and Physical Phenomena
  • TSE.M203 : Theory of Linear System
  • TSE.A202 : Solid Mechanics and Structure Engineering
  • TSE.A205 : Fluid Engineering
  • TSE.A201 : Material and Molecular Engineering
  • TSE.A204 : Chemical Reaction Engineering

Prerequisites (i.e., required knowledge, skills, courses, etc.)

None prerequisites.

Page Top