2016年度 線形システム論   Theory of Linear System

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
融合理工学系
担当教員名
小原 徹  山下 幸彦  高木 泰士  筒井 広明 
授業形態
講義 / 演習
メディア利用
 
曜日・時限(講義室)
月3-4(S513)  木3-4(S513)  
クラス
-
科目コード
TSE.M203
単位数
2
開講年度
2016年度
開講クォーター
2Q
シラバス更新日
2016年1月11日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

本講義の目的は,工学を学ぶ際に重要となる複素数やその関数の取扱い,周波数の概念,およびシステムを解析するために必要となる線形システムの理論をみつにつけることである。

到達目標

線形代数の基礎,複素関数論,フーリエ変換,ラプラス変換,z変換,システムのモデル化の理論を学び,また線形システムの応用として,線形回路,制御理論の基礎に関して理解する。

実務経験のある教員等による授業科目等

-

キーワード

行列式,固有値・固有ベクトル,複素関数,Cauchy-Riemannの関係式,複素積分,Cauchyの積分公式,Taylor級数,Laurant級数,極,フーリエ級数展開、フーリエ変換,ラプラス変換,離散時間フーリエ変換,離散フーリエ変換,z変換、連続システム、離散システム、可制御性、可観測性、安定性

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

講義およびその内容に関する演習によって行う。

授業計画・課題

  授業計画 課題
第1回 行列式 行列式を計算できる
第2回 固有値・固有ベクトル 固有値・固有ベクトルを使って計算できる
第3回 複素関数の定義,級数,導関数 複素関数を使って計算できる
第4回 領域,正則,Cauchy-Riemannの関係式 領域,正則,Cauchy-Riemannの関係式を使って計算できる
第5回 複素積分,Cauchyの積分公式 複素積分,Cauchyの積分公式を使って計算できる
第6回 Taylor級数,Laurant級数,極,特異点,留数公式 Taylor級数,Laurant級数,極,特異点,留数公式を使って計算できる
第7回 フーリエ級数展開 フーリエ級数展開を計算できる
第8回 フーリエ変換 フーリエ変換を計算できる
第9回 ラプラス変換 ラプラス変換を計算できる
第10回 ラプラス逆変換 ラプラス逆変換を計算できる
第11回 連続システムのモデル化 連続システムをモデル化できる
第12回 連続システムの解法 連続システムシステムを解析できる
第13回 フィードバック制御 フィードバック制御を計算できる
第14回 可制御性と可観測性,安定性 可制御性と可観測性,安定性の判定ができる
第15回 離散時間の変換 離散時間関数の変換が計算できる

教科書

山下幸彦「線形システム論」朝倉書店, 2013.

参考書、講義資料等

特になし

成績評価の基準及び方法

期末試験,演習により評価する。

関連する科目

  • TSE.M201 : 常微分方程式と物理現象

履修の条件(知識・技能・履修済科目等)

特になし

その他

シラバスは随時変更される。

このページのトップへ