2021 Transportation Science and Simulation

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Civil Engineering
Instructor(s)
Seo Toru 
Class Format
Lecture     
Media-enhanced courses
Day/Period(Room No.)
Wed7-8()  Fri7-8()  
Group
-
Course number
CVE.D405
Credits
2
Academic year
2021
Offered quarter
4Q
Syllabus updated
2021/10/1
Lecture notes updated
-
Language used
English
Access Index

Course description and aims

This course gives an overview of scientific and computational methodologies for describing urban transportation systems, especially vehicular traffic in road networks. Mathematical theories of traffic flow and dynamic traffic assignment will be explained first. Then, solution algorithms, i.e., simulation methods, for the theoretical models will be explained. Finally, the students will implement the algorithms by their own and apply them to solve some problems. For the implementation, easy-to-use computation environments, such as Microsoft Excel and other spreadsheet software are sufficient.

The aim of this course is to understand abstract, mathematical models of urban transportation systems, how to materialize such abstract models using computer programming, and how to solve practical problems using these tools.

Student learning outcomes

By the end of this course, students will be able to:
1. Explain what is traffic flow theory
2. Solve traffic flow models
3. Explain what is dynamic traffic assignment
4. Develop a primitive yet valid traffic flow simulator
5. Solve some problems using the simulator

Keywords

Traffic engineering; Traffic flow theory; Dynamic traffic assignment; Traffic management

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Lectures on fundamental knowledge will be given first. Occasional quizzes will be given. After the lectures, each student will develop her/his own simulator under guidance of the lecturer. Student will summarize the results of simulation as reports. The schedule of the course may be flexibly adjusted depending on the progress.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Introduction of transportation science and simulation, fundamentals of traffic flow theory Explain fundamentals of traffic flow theory
Class 2 Traffic flow theory: macroscopic traffic flow model, analytical solution method Explain macroscopic traffic flow model, analytical solution method
Class 3 Traffic flow theory: numerical solutions methods Explain numerical solutions methods
Class 4 [Exercise] Implementation of macroscopic traffic flow model Implement macroscopic traffic flow model
Class 5 Traffic flow theory: microscopic traffic flow models Explain microscopic traffic flow models
Class 6 [Exercise] Implementation of microscopic traffic flow model Implement of microscopic traffic flow model
Class 7 [Exercise] Application of macroscopic and microscopic traffic flow models Explain Application of macroscopic and microscopic traffic flow models
Class 8 Dynamic traffic assignment: Introduction Explain dynamic traffic assignment
Class 9 Dynamic traffic assignment: user equilibrium and system optimum Explain user equilibrium and system optimum
Class 10 Dynamic traffic assignment: link model and node model Explain link model and node model
Class 11 Dynamic traffic assignment: traffic management schemes Explain traffic management schemes
Class 12 [Exercise] Implementation of dynamic traffic assignment method Implement of dynamic traffic assignment method
Class 13 [Exercise] Implementation and application of dynamic traffic assignment method Implement and apply of dynamic traffic assignment method
Class 14 [Exercise] Application of dynamic traffic assignment method Apply of dynamic traffic assignment method

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

None

Reference books, course materials, etc.

Martin Treiber and Arne Kesting. "Traffic Flow Dynamics: Data, Models and Simulation", Springer-Verlag Berlin Heidelberg (2013).

Assessment criteria and methods

Quiz (30%), report (70%)

Related courses

  • CVE.D301 : Traffic and Transportation Systems
  • CVE.D402 : Transportation Network Analysis
  • CVE.M301 : Computers and Fundamental Programming
  • CVE.M302 : Computers and Applied Programming

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Basic skill to use spreadsheet software such as Microsoft Excel. It is not necessary to be able to use general programming languages, but you can use them by your own if you wish.

Page Top