2018 Advanced Topics in Civil Engineering I

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Civil Engineering
Instructor(s)
Wijeyewickrema Anil 
Class Format
Lecture     
Media-enhanced courses
Day/Period(Room No.)
-
Group
-
Course number
CVE.N531
Credits
2
Academic year
2018
Offered quarter
1-2Q
Syllabus updated
2018/5/22
Lecture notes updated
-
Language used
English
Access Index

Course description and aims

Computational Modeling of Concrete Structures: This course presents in a systematic way the evolution of microplane and lattice-particle model formulations for the simulation of the behavior of quasi-brittle materials, in general, and, more in particular, of aging and deteriorating concrete structures. The addressed topics are of interest to graduate students, post-doctoral associates, researchers, and professional engineers who need to become proficient with the use of modern, effective and versatile constitutive equations for the simulation of strain-softening and damage.

Student learning outcomes

The objective of this course is to introduce graduate and senior undergraduate students to advanced topics on the mechanics of quasi-brittle materials and aging concrete. Students will do this by building on the knowledge gained through all mechanics related courses of the undergraduate curriculum (statics, mechanics of materials, concrete design, etc.). Upon successful completion of the course, students will have an advanced understanding of concrete behavior as well as knowledge of specific modeling theories that can be used for the numerical simulation of concrete structures and other quasi-brittle materials. Having successfully completed this course, students will have the necessary skills to conduct concrete research as well as to solve advanced concrete design problems.

Keywords

concrete, computational modelling, quasi-brittle materials, constitutive equations

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

In-class lectures

Course schedule/Required learning

  Course schedule Required learning
Class 1 Topic 1 • Introduction • Continuum and discrete theories in solid mechanics Topic 2 • The Lattice Discrete Particle Model (LDPM) fundamentals • LDPM implementation and MARS • LDPM calibration and validation with quasi-static tests • Application to reinforced concrete Topic 3 • LDPM-F for the simulation of fiber reinforced concrete • Modeling of Ultra High Performance Concrete (UHPC) • Application to projectile penetration Topic 4 • Derivation of microplane model from particle models: high-order microplane formulation. Topic 5 • Derivation of microplane model from particle models: high-order microplane formulation, Cont. • Isogeometric implementation Topic 6 • Applications, hands-on activity, Q&A session Topic 7 • Microplane model for Cauchy continuum: kinematically constrained and statically constrained formulations • Elastic behavior and double constraint, numerical integration • Simple formulations for softening Topic 8 • Mathematical homogenization Topic 9 • Mathematical homogenization, Cont. • Application to ASR • Application to coarse graining Topic 10 • Applications, hands-on activity, Q&A session TBA

Textbook(s)

TBA

Reference books, course materials, etc.

TBA

Assessment criteria and methods

Final take-home exam

Related courses

  • CVE.A401 : Introduction to Solid Mechanics
  • CVE.A402 : Nonlinear Solid Mechanics
  • CVE.E401 : Mechanics of Structural Concrete

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Basic knowledge of continuum and structural mechanics. Basic knowledge of the finite element method.

Page Top