2016 Water Chemistry

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Civil Engineering
Instructor(s)
Fujii Manabu 
Course component(s)
Lecture
Day/Period(Room No.)
Tue9-10(M112)  Fri9-10(M112)  
Group
-
Course number
CVE.G403
Credits
2
Academic year
2016
Offered quarter
3Q
Syllabus updated
2017/1/11
Lecture notes updated
-
Language used
English
Access Index

Course description and aims

This lecture provides the knowledge and tools necessary to understand a range of environmental aqueous processes in natural waters (river, lake, ocean and so forth) and engineered waters (water and wastewater treatment systems). In the first 5 classes, students learn fundamentals in chemical reaction including thermodynamics, kinetics and environmental organic chemistry. The next 5 classes introduce specific reactions that occur in natural and engineered waters including acid-base, complexation and redox reactions. The last 5 classes provide some examples (e.g., nutrient cycles in watershed, disinfection in drinking water treatment, fate and behavior of organic contaminants, etc.) to which the aforementioned chemical theory can be applied in natural and engineered systems.
All over the world, the aquatic environment is expected to be the place which serve a good quality of water resource to human society and accommodate fruitful ecosystem and this can be achieved by properly managing and preserving water quality. This lecture aims to cultivate the ability of students, by using chemical reaction theory, to quantitatively assess the influence of human activities to the water quality and ecosystems including impact of wastewater discharge and climate changes to the water quality formation in watershed and transformation of water quality in treatment processes.

Student learning outcomes

By the end of this course, students will be able to:
• Understand fundamental concept and theory that govern aqueous environmental processes including thermodynamics, kinetics and non-ideal system modeling.
• Understand a range of aqueous processes including acid-base equilibrium, oxidation-reduction reactions, elementary and complex reactions, mass balance and transport, multiphase reaction modelling (solid/water/air interface processes).
• Apply problem-solving algebraical, geometric and computational tools for the quantitative characterization and prediction of water quality composition in the engineered water and also natural waters.
• Understand the impact of human activities (e.g., wastewater discharge and climate change) to the water quality in river, lake, coastal and oceanic waters

Keywords

Thermodynamics, kinetics, acid-base, complexation, nutrient, water treatment, chlorine disinfection

Competencies that will be developed

Intercultural skills Communication skills Specialist skills Critical thinking skills Practical and/or problem-solving skills
- -

Class flow

A small quiz and homework (report) will be given every time in the class. Final examination will be held in the end of course.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Introductory matters Understand overlapping neighborhoods of water chemistry and units used in this field.
Class 2 The thermodynamic basis for equilibrium Understand reaction and energy relationship.
Class 3 Characterization of ideal and non-ideal systems Understand activity-concentration relationship and effect of ionic strength on the relationship.
Class 4 Fundamentals of chemical kinetics Understand expression and solving technique of elemental and multiple kinetic reactions.
Class 5 Fundamentals of organic chemistry in aqueous environment Understand fundamentals of organic contaminants (classification and names) present in natural waters.
Class 6 Solving ionic Equilibria problems Understand algebraical, geometric and computational techniques for equilibrium reaction.
Class 7 Acid-base reaction and carbonate chemistry Understand the relationships among pH, acidity constant, carbonate and alkalinity.
Class 8 Metal and complexation reaction Understand mechanism(s) of metal and ligand coordination.
Class 9 Solid phase reaction and solubility Understand precipitation, dissolution and adsorption reactions in solid-water interface.
Class 10 Redox Equilibra and kinetics Understand expression and reaction mechanism of redox reaction including the Nernst equation.
Class 11 Chemistry of dissolved oxygen Understand a range of reactions governing chemistry of dissolved oxygen which is inevitable for biological respiration.
Class 12 Chemistry of chlorine disinfection in drinking water process Understand pH dependency of chlorine reaction and formation of disinfection by-product.
Class 13 Nitrogen and phosphorus chemistry and nutrient cycle Understand chemical behavior and cycles of nutrients (nitrogen and phosphorous) in aqueous environment.
Class 14 Natural organic matter and trace metals Understand the characteristics of natural organic matters and its influence to trace metal dynamic in environment.
Class 15 Chemistry of organic contaminants in natural waters Understand fate and behavior of organic contaminants and environmental factor(s) that influence the organic contaminants.

Textbook(s)

Water Chemistry: An Introduction to the Chemistry of Natural and Engineered Aquatic Systems, Oxford Univ Pr, 2011

Reference books, course materials, etc.

- Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edition by Werner Stumm, James J. Morgan, Wiley, 1995
- Principles and Applications of Aquatic Chemistry by François M. M. Morel, Janet G. Hering, Wiley, 1993

Assessment criteria and methods

Assessment of this lecture is provided according to following criteria: 20% for quiz in the end of lecture, 40% for report and 40% for final examination (100% in total).

Related courses

  • CVE.G402 : Environmental Statistics
  • CVE.G401 : Aquatic Environmental Science
  • GEG.E412 : Hydrology and Water Resources Conservation
  • GEG.E502 : Environmental Hydraulics
  • GEG.E411 : Atmospheric Environment in Megacities
  • GEG.E511 : Socio-ecological systems in changing global and local environments
  • GEG.E401 : Global Environmental System and Ecosystem Dynamics
  • CVE.B311 : River Engineering
  • CVE.G310 : Water Environmental Engineering
  • CVE.G230 : Environmental Planning Project

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites

Page Top