2019 Cell Physiology

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Life Science and Technology
Instructor(s)
Tachibana Kazunori  Nakamura Nobuhiro  Nakatogawa Hitoshi  Suzuki Takashi  Kato Akira  Komada Masayuki 
Course component(s)
Lecture
Day/Period(Room No.)
Tue3-4(J221,S223)  Fri3-4(J221,S223)  
Group
-
Course number
LST.A404
Credits
2
Academic year
2019
Offered quarter
2Q
Syllabus updated
2019/4/10
Lecture notes updated
-
Language used
English
Access Index

Course description and aims

The cytoplasm is a place where cells transduce signals to respond to various extracellular stimuli such as growth factors and hormones. It is also a place where a variety of organelles play their roles. The organelles do not work independently but they continuously interact with one another by transporting various molecules. The cytoskeleton is essentially involved in the transport of molecules, as well as in higher cellular events such as cell migration and apoptosis. This course will provide a comprehensive overview of signal transduction, organella functions, and cytoskeleton. Molecular fundamentals as well as physiological and pathological aspects will be discussed.

This course aims to provide universal view and insights into the cellular structure and function.

Student learning outcomes

By the end of this course, students will be able to:
1. Discuss individual cellular events with a universal view on the total cellular system.

Keywords

Signal transduction, organelle, proteolysis, membrane traffic, cytoskeleton

Competencies that will be developed

Intercultural skills Communication skills Specialist skills Critical thinking skills Practical and/or problem-solving skills
- - -

Class flow

In the first 10 min of each lecture, a summary of the previous lecture is given as necessary, followed by the main points of the day's lecture. In the last 15 min of each lecture, a quiz may be given to find out students' understandings. To support Japanese students' understandings, brief explanation may be given in Japanese as necessary.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Signal transduction (1) receptor tyrosine kinase Students must be able to explain the major signal transduction pathways by which growth factor-activated receptor tyrosine kinases induce cellular responses.
Class 2 Signal transduction (2) TGF-beta, cytokine, Wnt, TNF-alpha Students must be able to explain the signal transduction pathways by which TGF-beta, various cytokines, Wnt, and TNF-alpha induce cellular responses through their receptors.
Class 3 Signal transduction (3) G-protein-coupled receptor Students must be able to explain the signal transduction pathways by which various ligands induce cellular responses via G-protein-coupled receptors.
Class 4 Overview of organelles in eukaryotic cells Students must be able to explain the process by which newly-synthesized secretory proteins are transported to the extracellular space and the mechanisms of membrane fusion used in the process.
Class 5 Actin filament and cell motility Students must be able to explain the major functions of actin filaments as well as the cell motility.
Class 6 Microtubule and vesicular traffic Students must be able to explain the major functions of microtuble as well as the vesicular traffic.
Class 7 Transport across cell membranes Students must be able to explain how membrane transport proteins (channels, pumps and carriers) mediate transport of nutrients or electrolytes across the cell membranes.
Class 8 Ribosome, protein folding, proteasome Students must be able to explain how proteins are synthesized, how newly-synthesized are folded, and how misfolded proteins are degraded in eukaryotic cells.
Class 9 Mitochondria Students must be able to explain the major functions of mitochondria.
Class 10 Basic mechanisms of membrane traffic Students must be able to explain the process by which newly-synthesized secretory proteins are transported to the extracellular space and the mechanisms of membrane fusion used in the process.
Class 11 Membrane traffic between ER and Golgi; from Golgi to lysosomes Students must be able to explain the process by which newly-synthesized proteins are transported to the lysosome throught the ER and the Golgi apparatus.
Class 12 Endocytosis (receptor downregulation) and exocytosis Students must be able to explain 1) the process by which specific extracellular molecules and plasma membrane proteins are incorporated into the cell (endocytosis), 2) how receptor proteins on the plasma membrane are down-regulated via endocytosis, and 3) the process by which specific molecules are secreted to the extracellular space (exocytosis).
Class 13 Autophagy Students must be able to explain the roles and molecular mechanisms of autophagy, which delivers cytoplasmic proteins, organelles, and cytoplasmic pathgens to the lysosome.
Class 14 Apoptosis Students must be able to explain the molecular mechanisms of apoptosis (programmed cell death).

Textbook(s)

Not specified.

Reference books, course materials, etc.

Reference books: Molecular Biology of the Cell (Alberts et al., Garland Science), Molecular Cell Biology (Rodish et al., W H Freeman & Co). Handouts will be distributed at the beginning of class when necessary.

Assessment criteria and methods

Mid-term and term-end reports

Related courses

  • LST.A401 : Molecular and Cellular Biology

Prerequisites (i.e., required knowledge, skills, courses, etc.)

None.

Page Top