2022 Pharmaceutical Chemistry

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Life Science and Technology
Instructor(s)
Urabe Hirokazu  Kamiya Mako  Hata Takeshi  Fujie Toshinori 
Class Format
Lecture    (Livestream)
Media-enhanced courses
Day/Period(Room No.)
Tue1-2(W321)  Fri1-2(W321)  
Group
-
Course number
LST.A343
Credits
2
Academic year
2022
Offered quarter
2Q
Syllabus updated
2022/6/2
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

This course systematically describes practical knowledge and theory of organic chemistry necessary for the access to biologically active compounds and pharmaceuticals. Thus, the contents of this course are individual organic reactions, synthetic methods, and utility of such products, including the handling of heterocyclic compounds and optically active compounds, both of which frequently appear as biologically active compounds and pharmaceuticals. In addition, the structural diversity of naturally occurring products, their artificial synthesis and modification based on organic chemistry, and derived medicines in this way are important subjects in this course. As a whole, this course gives lectures on not only practical organic reactions and syntheses but also the industrial production of medicines, obtained via the study of structure-activity relationship and molecular recognition taking advantage of organic chemistry.

While this course, if necessary, allows students to review the subjects on nature, reactivity, analysis, and synthesis of organic compounds mastered during Organic Chemistry I (alkanes and haloalkanes)~IV (carbonyl compounds and amines), it provides them with more practical knowledge and theory of a higher level, by discussing concrete examples of the access to biologically active compounds or pharmaceuticals. Furthermore, the students learn the utility of naturally occurring products and the importance of organic chemistry to perform the structure-activity relationship and the matching study of drugs to their receptors in the design of artificial pharmaceutical drugs starting with the former. Thus, this course has students acquire the practical ability to manage organic chemistry in the preparation of bioactive molecules and understand the broad area covered by organic chemistry including the extension to industrial production.

Student learning outcomes

By the end of this course, students will be able to:
1. Understand and explain that organic chemistry plays a critical role not only in the reaction and synthesis but also in the treatment of lead compounds and the structure-activity relationship in the development of pharmaceutical drugs.
2. Understand and explain the nature, reactions, and synthesis of heterocyclic compounds frequently found in pharmaceutical drugs.
3. Understand and explain the nature, reactions, and synthesis of optically active compounds.
4. Understand and explain the diversity of structures of naturally occurring products or biomolecules and their corresponding synthetic methods.
5. Understand and explain the process of molecular modification from naturally occurring products or biomolecules to pharmaceutical drugs.
6. Understand and explain the way to industrial production of pharmaceutical drugs.

Keywords

naming of medicines, lead compounds, molecular modification, structure-activity relationship, random screening, receptor, drug metabolism, heterocycles, biomolecules, natural organic compounds, pharmacokinetics, optically active compounds, asymmetric synthesis, molecular recognition, combinatorial synthesis, process chemistry

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

All classes are conducted online (Zoom). The final exam is given face to face during the make-up class and final exam period. However, please note that the final examination may be changed depending on the status of the COVID-19 infection.
Lectures are given based on the documents distributed in class. In the 6th and 9th classes dealing with heterocyclic compounds, the textbook shown below will be used. Students are given concise exercise problems for the last 10 minutes of each class, and their solutions and remarks will be explained at the beginning of the next class.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Organic chemistry and pharmaceutical chemistry Understand and explain the role of organic chemistry in the development of pharmaceutical drugs.
Class 2 Pharmaceutical synthesis and lead compounds Understand and explain the role of lead compounds in the synthesis of pharmaceutical drugs.
Class 3 Drug molecules and natural organic compounds Understand and explain the similarity and diversity of drug molecules and natural organic compounds.
Class 4 The structures of pharmaceutical drugs and biological activity (structure-activity relationship) Understand and explain the importance of structures of pharmaceutical drugs and relevant structure-activity relationship and bioequivalence of functional groups with synthetic methods.
Class 5 Drug molecules and pharmacokinetics/drug delivery systems Understand and explain the design of pharmaceutical molecules considering pharmacokinetics.
Class 6 Heterocyclic compounds and pharmaceuticals Understand and explain the nature of heterocyclic compounds in pharmaceuticals and their synthesis.
Class 7 Aliphatic heterocyclic compounds and pharmaceuticals Understand and explain the nature of aromatic heterocyclic compounds in pharmaceuticals and their synthesis.
Class 8 Aromatic heterocyclic compound and pharmaceuticals Understand and explain the nature of aromatic heterocyclic compounds in pharmaceuticals and their synthesis.
Class 9 Heterocyclic compounds and biological activity Understand and explain the biological activities of heterocyclic compounds in nature.
Class 10 Optically active compound Understand and explain the nature of the optically active compounds present in many pharmaceutical structures.
Class 11 Asymmetric synthesis and drug Understand and explain the asymmetric synthesis required to develop optically active medicines.
Class 12 Molecular recognition Understand and explain the molecular recognition necessary for the functional expression of pharmaceutical products.
Class 13 Combinatorial synthesis Understand and explain the combinatorial synthesis to be used in the early stage of drug development
Class 14 Process chemistry Understand and explain the process synthesis in the later stage of drug development.

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

Course materials are provided during class. In the 7~9th classes dealing with heterocyclic compounds, the following is used as textbook: The Japanese translation of K. Peter C. Vollhardt, Neil E. Schore, Organic Chemistry, 6th Edition (Last volume), Chapter 25 (pp. 1383~1433), Kagakudojin; ISBN-13: 978-4759814736. (Japanese).

Reference books, course materials, etc.

If necessary, references are shown in class.

Assessment criteria and methods

Students will be assessed on the concise exercise problems in each class (30%) and a final exam (70%).

Related courses

  • LST.A202 : Organic Chemistry I (alkanes and haloalkanes)
  • LST.A207 : Organic Chemistry II (alcohols and alkenes)
  • LST.A212 : Organic Chemistry III (benzene and ketones)
  • LST.A217 : Organic Chemistry IV (carbonyl compounds and amines)
  • LST.A333 : Bioorganic Chemistry

Prerequisites (i.e., required knowledge, skills, courses, etc.)

None required.

Contact information (e-mail and phone)    Notice : Please replace from "[at]" to "@"(half-width character).

H. Urabe: hurabe[at]bio.titech.ac.jp, 045-924-5849; M. Kamiya: kamiya.m.ad[at]m.titech.ac.jp、045-924-5869; T. Hata: thata[at]bio.titech.ac.jp, 045-924-5838; T. Fujie: t_fujie[at]bio.titech.ac.jp, 045-924-5712

Office hours

Appointment by e-mail is recommended. H. Urabe: B2 Bldg. 11F Room# 1131; M. Kamiya: B1 Bldg. 9F Room# 901; T. Hata: B2 Bldg. 11F Room# 1127; T. Fujie: B2 Bldg. 10F Room# 1022

Page Top