2021 Organic Chemistry II (alcohols and alkenes)

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Life Science and Technology
Yuasa Hideya  Tsutsumi Hiroshi  Nakamura Hiroyuki  Mori Toshiaki  Hata Takeshi  Kinbara Kazushi 
Course component(s)
Lecture    (ZOOM)
Day/Period(Room No.)
Tue3-4(I321)  Fri3-4(I321)  
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

The objects of bioscience and biotechnology are apparently organic compounds. Thus, this lecture systematically and comprehensively describes fundamental topics necessary for the use of or the research on organic compounds, including the knowledge and theory on their nomenclature, nature, analysis, reactions, synthesis, and utility. The contents consist of the IUPAC nomenclature, the electronic states and bonding of molecules, three-dimensional structures of molecules, the instrumental analysis of molecular structures (NMR, IR, Ms), reactions of each functional group, the carbon-carbon bond formation and organic synthesis, and utility of natural and artificial organic compounds, which will be lectured according to the textbook, with the theoretical background and relationship between the topics being mentioned.
At the outset, this course allows the student to firmly learn the general knowledge and theory common to individual topics, such as the nomenclature of compounds, electronic states and bonding of molecules and their nature and structures owing to the former, and the electronic theory of organic chemistry essential to the description of reaction mechanisms. At the next stage, the students will proceed to study reactions unique to each functional group and the instrumental analysis of molecular structures, which are not only memorized but also well interpreted by them on the basis of the above general notion. While reviewing the previous two steps, the students are requested to increase their ability to understand the application of the fundamental topics, for example, the synthesis of organic compounds and utility of natural and artificial compounds. As a whole, this lecture will provide students basic knowledge and theory of organic chemistry and, at the same time, its covering area of utility of organic compounds.
Organic Chemistry II (alcohols, alkenes) aims to guide students in the world of biomolecules by getting them to learn the synthetic methods, properties, and reaction mechanisms of alcohols and ethers, which contain C, H, and O atoms, three out of four essential atoms in proteins, nucleic acids, and oligosaccharides. The course will also cover alkenes, C=C, a ubiquitous functional group in biomolecules. Understanding of alkenes is significant, because they are exploited as intermediates to useful materials. Two important instrument-based measurements, nuclear magnetic resonance spectra (NMR) and infrared spectra (IR), are also covered.

Student learning outcomes

By the end of this course, students will be able to:
1. Understand that the O-H bond of alcohols tends to dissociate into an O anion and proton.
2. Recognize that the oxidation of alcohols gives aldehydes.
3. Learn how alcohols are synthesizable by the addition reactions of organometallic reagents, such as Grignard reagents, with carbonyl compounds, and by the addition reactions with alkenes.
4. Learn how alcohols are derivatizable into haloalkanes, esters, and ethers.
5. Learn how alcohols, ethers, and carbonyl coupounds can be synthesized by the addition reactions with alkenes.
6. Learn how these synthetic compounds are identified by using NMR, IR, and mass spectra.


alcohol, ether, alkene, NMR, IR, mass spectra

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

The lecture is to be done in order according to the textbook. (Thus, students are encouraged to familiarize the expected pages of the textbook in advance to the class and to review them after the class.) Students are given concise exercise problems for the last 10 minutes of each class, and their solutions and remarks will be explained at the beginning of the next class. Three assignments will be given.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Properties of alcohols Nomencrature, Structure and physical properties of alcohols
Class 2 Synthesis of alcohols Nucleophilic substitution reaction, Reduction of aldehyde
Class 3 Grignard reaction Organnometallics, Synthetic strategy
Class 4 Reaction of alcohols Reaction with acid and base, Rearrangement reaction, Esters, Haloalkanes
Class 5 Summary of the lectures 1st to 4th comprehensive understanding of classes 1〜4 and contents of organic chemistry I
Class 6 Synthesis of ethers Nomencrature, structure, and physical properties of ehters, Williamson ether synthesis
Class 7 Reaction of ethers Oxacyclopropane (epoxide)
Class 8 Proton NMR: Chemical shift and spin splitting, Carbon-13 NMR and its application Mechanisms of nuclear magnetic resonance, Analysis of molecular structure, Correlation spectroscopy
Class 9 Summary of the lectures 6th to 8th comprehensive understanding of classes 6〜8 and contents of organic chemistry I
Class 10 Structure of alkenes Nomencrature, structure, and physical properties of alkenes
Class 11 IR and Mas spectroscopy Bond vibrations, Measurement of molecular weight, Fragmentation, Degree of unsaturation
Class 12 Reaction of alkenes 1 Pi bonds, Hydrogenation, Halogenation, Oxymercuration, Hydroboration
Class 13 Reaction of alkenes 2 Diazomentane, Carbenes, Epoxidation, Osmium tetroxide, Ozonolysis, Radical reactions
Class 14 Summary of the lectures 10th to 13th comprehensive understanding of classes 10〜13 and contents of organic chemistry I

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.


Organic Chemistry - Structure and Function, 8th ed., K. P. C. Vollhardt and N, E. Schore, W. H. Freeman and Co., New York, 2018.

Reference books, course materials, etc.

Organic Chemistry - Structure and Function, 6th ed., K. P. C. Vollhardt and N, E. Schore, W. H. Freeman and Co., New York, 2011.
Study Guide and Solutions - Manual for Organic Chemistry, 6th ed., N, E. Schore, W. H.

Assessment criteria and methods

Students will be assessed on the concise exercise problems in each class (30%) and three assignments (70%).

Related courses

  • LST.A202 : Organic Chemistry I (alkanes and haloalkanes)
  • LST.A212 : Organic Chemistry III (benzene and ketones)
  • LST.A217 : Organic Chemistry IV (carbonyl compounds and amines)
  • LST.A333 : Bioorganic Chemistry
  • LST.A343 : Pharmaceutical Chemistry

Prerequisites (i.e., required knowledge, skills, courses, etc.)



As there is no duplication of the contents from Organic Chemistry I (alkanes and haloalkanes) to IV (carbonyl compounds and amines), the systematic study in this order will maximize its efficiency. Therefore, students are advised to enroll all of them in serial order. After completion of these courses, more advanced lectures, Bioorganic Chemistry and Pharmaceutical Chemistry, are available. Thus, students can proceed to the higher level of organic chemistry by taking one or both of them, dependent on their interest.

Page Top