2020 Processes for creation in science and technology【School of Life Science and Technology】

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
School of Life Science and Technology
Instructor(s)
Yamaguchi Yuki  Taguchi Hideki  Kimura Hiroshi  Murakami Satoshi  Seio Kohji  Ohkubo Akihiro 
Course component(s)
Lecture
Mode of instruction
ZOOM
Day/Period(Room No.)
Tue5-6(W531)  
Group
-
Course number
XLS.P101
Credits
1
Academic year
2020
Offered quarter
2Q
Syllabus updated
2020/9/18
Lecture notes updated
2020/7/30
Language used
Japanese
Access Index

Course description and aims

How the green fluorescence protein (GFP) emits light is discussed from various perspectives such as physical chemistry, organic chemistry, and biochemistry to introduce the idea that structure makes function. Through active learning with the use of molecular models and tablet PCs, students are guided to an intuitive understanding of the flow of genetic information (the central dogma), protein structure and folding, the mechanism by which chromophore emits fluorescence, the technology behind fluorescence microscopy and so on, leading to a higher level of interest in life science and technology.

Student learning outcomes

By the end of this course, students will be able to:
1. understand how GFP emits light from various perspectives such as physical chemistry, organic chemistry, biochemistry, and structural biology.
2. understand, at the basic level, and explain the structure of GFP that is critical for emitting light, the flow of genetic information that makes protein, and technology behind fluorescence microscopy.

Keywords

Green fluorescent protein (GFP), the central dogma, protein folding, fluorescence microscopy

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Both lecture and exercise are conducted in parallel. Students are asked to solve problems using molecular models, tablet PCs, and other tools in the course.

Course schedule/Required learning

  Course schedule Required learning
Class 1 How GFP emits light #1: With a focus on various organic molecules found in nature, the mechanism of fluorescence emission is explained at the atomic level. Students must be able to explain the physicochemical mechanism by which various organic molecules emit light.
Class 2 How GFP emits light #2: The physicochemical properties of p-hydroxybenzylidene imidazolinone, the chromophore of GFP, are explained in order to show exactly how GFP emits fluorescence. Students must be able to describe the molecular structure of the chromophore of GFP and to explain the mechanism of fluorescence emission in detail.
Class 3 rotein structure underlying fluorescence emission of GFP #1: The entire molecular structure of GFP is examined at the atomic level from the perspective of structural biology. Students must be able to describe the characteristics of the tertiary structure of GFP.
Class 4 Protein structure underlying fluorescence emission of GFP #2: The process of protein folding, which allows the formation of a specific tertiary structure from its linear sequence, is explained using GFP as an example. Students must be able to describe the process of protein folding using GFP as an example.
Class 5 The principle of fluorescence microscopy: The technological basis for the observation of fluorescence emitted from GFP and its variants is explained. Students must be able to explain the principle of fluorescence microscopy.
Class 6 Cell biological study using GFP: By using GFP, the pattern of gene expression, subcellular localization of a protein and biochemical processes in the cell can be visualized. Various applications of GFP are presented. Students must be able to raise some examples on cell biological study using GFP.
Class 7 How the genetic information of GFP is replicated: How the genetic information for GFP is securely stored in the cell nucleus and maintained over generations will be explained. Student must be able to explain the structure of DNA double helix at the atomic level and the molecular basis for its maintenance over generations.

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

None required.

Reference books, course materials, etc.

None required.

Assessment criteria and methods

Assessment is based on the quality of in-class assignments. Full attendance is compulsory.

Related courses

  • LAS.F101 : Frontiers of science and technology

Prerequisites (i.e., required knowledge, skills, courses, etc.)

There are no prerequisites, but it is recommended that students have successfully completed Frontiers of Science and Technology.

Page Top