2020年度 画像・映像認識   Image and Video Recognition

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
知能情報コース
担当教員名
井上 中順 
授業形態
講義
メディア利用
Zoom
曜日・時限(講義室)
-
クラス
-
科目コード
ART.T551
単位数
2
開講年度
2020年度
開講クォーター
4Q
シラバス更新日
2020年6月7日
講義資料更新日
-
使用言語
英語
アクセスランキング
media

講義の概要とねらい

本講義は,画像・映像認識に関する基礎的な概念と近年の技術進展を概観し,畳み込みニューラルネットワーク・領域提案ネットワーク・全層畳み込みネットワーク・敵対的生成ネットワークといった,深層学習モデルの仕組みを学ぶものである.また,授業と課題を通じて,深層学習のライブラリを用いたネットワークの学習方法を実践的に学ぶ.

到達目標

画像・映像認識に関する基礎的な概念について説明ができ,深層学習のライブラリを用いて実践的にネットワークの実装ができることを目標とする.

実務経験のある教員等による授業科目等

-

キーワード

深層学習,ニューラルネットワーク,画像認識,映像認識

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

画像・映像認識の概要およびその理論的な取扱いついて講義資料(スライド)を用いて講義する.

授業計画・課題

  授業計画 課題
第1回 画像・映像認識の概要 現在の画像・映像認識技術の概要を理解する
第2回 数学の基礎 線形代数および最適化の基礎を理解する
第3回 深層学習プログラミングの基礎 深層学習ライブラリ使用方法の基礎を理解する
第4回 画像分類 畳み込みニューラルネットワークの仕組みを理解する
第5回 物体検出 領域提案ネットワークの仕組みを理解する
第6回 画像セグメンテーション 全層畳み込みネットワークの仕組みを理解する
第7回 動作認識 映像から人物動作を認識する方法を理解する
第8回 データ拡張 画像認識に関するデータ拡張法を理解する
第9回 画像生成 敵対的生成ネットワークの仕組みを理解する
第10回 敵対的サンプル 敵対的サンプルの生成方法と防御方法を理解する
第11回 ドメイン適応 異なるドメインへの転移方法を理解する
第12回 ゼロショット学習 属性情報やテキストを用いた学習方法を理解する
第13回 分散学習 複数のGPUを用いた学習方法を理解する
第14回 深層学習の理論解析 深層学習の理論解析の基礎を理解する

教科書

-

参考書、講義資料等

I. Goodfellow, Y. Benito, A. Courville, Deep Learning, MIT Press, 2016.
D. Foster, Generative Deep Learning, O'Reilly Media, 2019.

成績評価の基準及び方法

レポートにより評価する (100%)

関連する科目

  • ART.T458 : 先端機械学習
  • XCO.T489 : 基盤人工知能
  • XCO.T490 : 基盤人工知能演習
  • XCO.T483 : 応用AI・データサイエンスA
  • XCO.T485 : 応用AI・データサイエンスC
  • XCO.T486 : 応用AI・データサイエンスD

履修の条件(知識・技能・履修済科目等)

-

このページのトップへ