2020年度 統計的学習理論   Statistical Learning Theory

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数理・計算科学コース
担当教員名
渡辺 澄夫 
授業形態
講義
メディア利用
Zoom
曜日・時限(講義室)
火3-4(H137)  金3-4(H137)  
クラス
-
科目コード
MCS.T403
単位数
2
開講年度
2020年度
開講クォーター
2Q
シラバス更新日
2020年4月1日
講義資料更新日
-
使用言語
英語
アクセスランキング
media

講義の概要とねらい

この科目は数学を学ぶ科目であり数学を学んでいない人には適しません。この講義は機械学習と統計学の安易な入門あるいは安易な実用ではありません。代数幾何・超関数・関数空間上の中心極限定理に基づいた数学的学習理論を講義する。現代数学と学習理論の数学的構造を理解できるようになることが目的である。講義の主旨を十分に理解した上で履修してください。

到達目標

この講義は機械学習と統計学の安易な入門あるいは安易な実用ではありません。代数幾何・超関数・関数空間上の中心極限定理を理解し,現代数学と学習理論の数学的構造を理解する。

実務経験のある教員等による授業科目等

該当する 実務経験と講義内容との関連(又は実践的教育内容)
講義担当者は企業で8年間実務を担当しましたが世の中で実用的と言われるものがまったく役立たないことを痛感しました。役立ったのは、代数幾何、代数解析、超関数論などの現代数学と、数学の証明をひとつずつ自分で与えながら進むことによってはじめて身に着けることができる数学という学問のありかたそのものです。安易な実用を求める人にこの科目は適していません。

キーワード

代数幾何 超関数 関数空間上の中心極限定理 情報量規準 安易な入門の講義ではない

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)
現代数学と学習理論の数学的構造を理解できる。

授業の進め方

この講義は数学です。機械学習あるいは統計学の安易な入門と応用ではありません。レポート課題の回答には現代数学が必要です。

授業計画・課題

  授業計画 課題
第1回 現代数学が必要です。この講義は機械学習と統計学の安易な入門あるいは安易な実用ではありません。 この講義の主旨を理解する。
第2回 確率論 確率論を理解する
第3回 確率論 確率論を理解する
第4回 代数幾何の基礎 代数幾何を理解する
第5回 代数幾何の基礎 代数幾何を理解する
第6回 超関数の基礎 超関数を理解する
第7回 超関数の基礎 超関数を理解する
第8回 関数空間の確率論 関数空間の確率論を理解する
第9回 関数空間の確率論 関数空間の確率論を理解する
第10回 数学的学習理論 数学的学習理論を理解する
第11回 数学的学習理論 数学的学習理論を理解する
第12回 自由エネルギー 自由エネルギーを理解する
第13回 汎化損失 汎化損失を理解する
第14回 数理統計学への応用 数理統計学への応用を理解する

教科書

なし。

参考書、講義資料等

渡辺澄夫、代数幾何と学習理論、森北出版、2006.
渡辺澄夫、ベイズ統計の理論と方法、コロナ社、2012.

成績評価の基準及び方法

レポート提出による。レポート課題は数学の問題になります。単位をとるためには数学の証明と大量の計算が必要です。この講義は機械学習と統計学の安易な入門あるいは安易な実用ではありません。

関連する科目

  • MCS.T507 : 統計数理
  • ART.T458 : 機械学習

履修の条件(知識・技能・履修済科目等)

微分積分、複素関数論、確率論を学んでいること。数学の講義です。この講義が機械学習と統計学の安易な入門あるいは安易な実用ではないことを理解していることが履修のための条件です。

その他

この講義は機械学習と統計学の安易な入門あるいは安易な実用ではないことにくれぐれも注意してください。

このページのトップへ