2020年度 論理と計算   Logic and Computation

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数理・計算科学コース
担当教員名
鹿島 亮  西崎 真也 
授業形態
講義
曜日・時限(講義室)
火1-2(W833)  金1-2(W833)  
クラス
-
科目コード
MCS.T416
単位数
2
開講年度
2020年度
開講クォーター
1Q
シラバス更新日
2020年4月20日
講義資料更新日
-
使用言語
英語
アクセスランキング
media

講義の概要とねらい

ソフトウエアの基礎理論と数理論理学には概念や手法に共通部分が多い。たとえば「プログラム」と「証明」とは本質的に同じものである,という見方ができる(カリー・ハワード同型対応)。本講義のねらいはそのようなソフトウエア基礎理論と数理論理学の共通部分を明らかにすることである。
具体的には古典論理と直観主義論理の自然演繹,シークエント計算,そしてラムダ計算の基本的な性質を学ぶ。

到達目標

ソフトウエアの基礎理論における数理論理学的な概念や手法を身に付ける。

キーワード

カリー・ハワード同型対応,ラムダ計算,古典論理,直観主義論理,自然演繹,シークエント計算

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力

授業の進め方

講義による。
3回程度の宿題を課す。

授業計画・課題

  授業計画 課題
第1回 論理学の導入。論理式。 授業時に指示する。
第2回 論理式の真理値。 授業時に指示する。
第3回 自然演繹。 授業時に指示する。
第4回 シークエント計算。 授業時に指示する。
第5回 古典論理の完全性。 授業時に指示する。
第6回 直観主義論理の完全性。 授業時に指示する。
第7回 直観主義論理の性質。 授業時に指示する。
第8回 ラムダ計算の導入。 授業時に指示する。
第9回 ラムダ計算の能力。 授業時に指示する。
第10回 チャーチロッサー性。 授業時に指示する。
第11回 コンビネータ論理の導入。 授業時に指示する。
第12回 コンビネータ論理の性質。 授業時に指示する。
第13回 カリー・ハワード同型対応。 授業時に指示する。
第14回 型体系の性質。 授業時に指示する。

教科書

Dirk van Dalen: Logic and Structure, Fourth Edition (Corrected 2nd printing 2008).
Henk Barendregt, Erik Barendsen: Introduction to Lambda Calculus (Revised edition December 1998, March 2000).
(Both are downloadable from the internet.)

参考書、講義資料等

授業時に指示する。

成績評価の基準及び方法

宿題による。

関連する科目

  • MCS.T313 : 数理論理学

履修の条件(知識・技能・履修済科目等)

MCS.T404「計算論理学」を履修済の学生は履修不可。

このページのトップへ