2019年度 情報可視化   Information Visualization

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数理・計算科学コース
担当教員名
脇田 建 
授業形態
講義
曜日・時限(講義室)
月3-4(W832)  木3-4(W832)  
クラス
-
科目コード
MCS.T412
単位数
2
開講年度
2019年度
開講クォーター
4Q
シラバス更新日
2019年9月20日
講義資料更新日
-
使用言語
日本語
アクセスランキング

講義の概要とねらい

情報可視化とヴィジュアルアナリティクス(視覚的データ解析)に関して基礎から最近の動向までを解説するとともに、そのために必要な実践能力を育む。

到達目標

(1) 情報可視化、ヴィジュアルアナリティクスの考え方を理解する
(2) 情報可視化、ヴィジュアルアナリティクスに要するデータ処理の技術が身につく
(3) 情報可視化、ヴィジュアルアナリティクスで用いられる表現手法について理解し、簡単な表現を実践できる

キーワード

情報可視化、ヴィジュアルアナリティクス、インタラクティブデータ解析

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
-

授業の進め方

概ね講義と実習を交互に実施する。実習では、直前の講義で学んだ内容に関した事例をグループのなかで議論した結果をまとめて発表する。宿題としてプログラミング課題を与える。最終課題としてインフォグラフィックスのポスター作成を実施する。

授業計画・課題

  授業計画 課題
第1回 LX1: ガイダンス、情報可視化とは 情報可視化の概要について学ぶ
第2回 LX2: What: Data and data abstraction データについて語り、データ抽象化について理解する。
第3回 EX2: Case studies on LX2 LX2 に関するケーススタディとグループ討論。 プログラミング課題 (外れ値解析: Pandoc, Pandas)
第4回 LX3: Why: Task and task abstraction 可視化の目的について理解する。
第5回 EX3: Case studies on LX3 LX3 に関するケーススタディとグループ討論。 プログラミング課題 (Pandas)
第6回 LX4: Visualization of low-dimensional quantitative data 低次元数値データの可視化技術について学ぶ
第7回 EX4: Case studies on LX4 LX4 に関するケーススタディとグループ討論。 プログラミング課題 (Matplotlib)
第8回 LX5: Visualization of high-dimensional quantitative data 高次元数値データの可視化技術について学ぶ
第9回 EX5: Case studies on LX5 LX5 に関するケーススタディとグループ討論。 プログラミング課題 (Matplotlib)
第10回 LX6: Visualization of Temporal data 時間とともに変化するデータの可視化について学ぶ
第11回 EX6: Case studies on LX6 LX6 に関するケーススタディとグループ討論。 プログラミング課題 (Pandas, Matplotlib)
第12回 LX7: Interaction インタラクティブデータ解析の応用例について学ぶ
第13回 LX8: Visual Analytics Systems さまざまなヴィジュアルアナリティクスシステムについて学ぶ
第14回 LX9: Immersive VA VR, AR 技術とヴィジュアルデータアナリティクスについて学ぶ
第15回 まとめ まとめ

教科書

指定なし

参考書、講義資料等

伊藤貴之、意思決定を助ける情報可視化技術、コロナ社, 2018.

成績評価の基準及び方法

以下の総合点で成績を算定する。
- グループ討論への貢献 (40点)
- 5つのプログラミング課題 (30点)
- 最終課題:インフォグラフィクスのポスター作成 (30点)

関連する科目

  • MCS.T213 : アルゴリズムとデータ構造
  • MCS.T332 : データ解析
  • MCS.T204 : 計算機科学概論
  • CSC.T271 : データ構造とアルゴリズム
  • CSC.T253 : 手続き型プログラミング発展
  • CSC.T421 : ヒューマンコンピュータインタラクション
  • CSC.T272 : 人工知能
  • CSC.T343 : データベース

履修の条件(知識・技能・履修済科目等)

- コミュニケーション能力:500文字程度の作文を厭わないこと、学生同士の議論を忌避しないこと
- 本学情報理工学院の卒研配属レベルのプログラミング能力 (Python の経験があるとなおよい)
- GitHub, git を不自由なく利用できること

このページのトップへ