2016年度 数理最適化理論   Mathematical Optimization: Theory and Algorithms

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
数理・計算科学コース
担当教員名
福田 光浩  山下 真 
授業形態
講義
曜日・時限(講義室)
火5-6(W331)  金5-6(W331)  
クラス
-
科目コード
MCS.T402
単位数
2
開講年度
2016年度
開講クォーター
3Q
シラバス更新日
2016年4月27日
講義資料更新日
2016年11月18日
使用言語
英語
アクセスランキング

講義

第1回 凸集合および関連諸定理

平成28年09月23日(金) 5-6時限開講

講義

第2回 リプシッツ連続微分可能関数

平成28年09月30日(金) 5-6時限開講

講義

第3回 微分可能関数に対する最適性条件

平成28年10月04日(火) 5-6時限開講

講義

第4回 無制約最適化問題を最小化するアルゴリズム

平成28年10月11日(火) 5-6時限開講

講義

第5回 最急降下法,ニュートン法

平成28年10月14日(金) 5-6時限開講

講義

第6回 共役勾配法,準ニュートン法

平成28年10月18日(火) 5-6時限開講

講義

第7回 微分可能凸関数

平成28年10月21日(金) 5-6時限開講

講義

第8回 理解度確認総合演習

平成28年10月25日(火) 5-6時限開講

講義

第9回 リプシッツ連続な勾配をもつ微分可能凸関数

平成28年10月28日(金) 5-6時限開講

講義

第10回 微分可能強凸関数

平成28年11月01日(火) 5-6時限開講

講義

第11回 勾配を用いた手法における最悪ケース解析

平成28年11月04日(金) 5-6時限開講

講義

第12回 微分可能凸関数に対する最急降下法

平成28年11月08日(火) 5-6時限開講

講義

第13回 微分可能凸関数に対する加速勾配法における推定級数

平成28年11月11日(金) 5-6時限開講

講義

第14回 微分可能凸関数に対する加速勾配法

平成28年11月15日(火) 5-6時限開講

講義

第15回 min-max問題における加速勾配法

平成28年11月22日(火) 5-6時限開講

Adobe Readerの入手

PDFファイルをご覧になるには、AdobeSystem社のプラグインソフトとして「Adobe Reader」が必要です。
お持ちでない方はこちらからダウンロード(無料)してご利用ください。

Creative Commons License