2020年度 基盤データサイエンス演習   Exercises in fundamentals of data science

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
情報理工学院
担当教員名
金森 敬文  関嶋 政和  村田 剛志  小野 峻佑  川島 孝行  小宮 健  小林 憲正  新田 克己  柳澤 渓甫 
授業形態
演習
メディア利用
 
曜日・時限(講義室)
木7-8(Zoom)  
クラス
-
科目コード
XCO.T488
単位数
1
開講年度
2020年度
開講クォーター
3Q
シラバス更新日
2020年9月29日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

すべての分野において計算とデータの活用が欠かせない時代になってきている.本講義では,理工系の研究者・技術者として活躍していくために重要となる,大量のデータをコンピュータを利用して解析し,利用するための基礎的な方法に関する演習を行う.本講義のねらいは,コンピュータ・ソフトウェアを用いてデータを処理・分析し,そこから重要な知見得る基礎技術を身に付けさせることである.

到達目標

コンピュータによるデータの処理の基本を理解し,統計学的分析のためのコンピュータ・ソフトウェアを適切に利用できるようになること

キーワード

分類,回帰,クラスタリング,次元圧縮,訓練誤差と汎化誤差,交差検証

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

講義科目「基盤データサイエンス」と連動し,講義内容に関連したプログラミング演習を行う

授業計画・課題

  授業計画 課題
第1回 前提学力確認テスト 履修に必要となる数学的事項,Python 言語などに関する知識についてテストする.
第2回 計算環境の整備と活用 データ分析の基盤であるGoogle Colaboratoryや、Pythonおよびそのライブラリについて学ぶ.
第3回 分類 ラベルのついたデータから判別規則を抽出する手法について演習を行う
第4回 クラスタリング ラベルのないデータをいくつかのクラスに分ける方法について演習を行う
第5回 主成分分析 主成分分析について演習を行う
第6回 次元圧縮 多次元尺度構成法,正準相関分析など多変量解析における次元圧縮の手法について演習を行う
第7回 発展的トピック アンサンブル学習の手法について演習を行う
第8回 総合討論 様々な分野でのデータ分析の活用法について議論する

授業時間外学修(予習・復習等)

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

特になし

参考書、講義資料等

OCW-i にて電子的に配布する

成績評価の基準及び方法

演習課題に関するレポートに基づく

関連する科目

  • XCO.T487 : 基盤データサイエンス
  • XCO.T483 : 応用AI・データサイエンスA
  • XCO.T484 : FinTechとデータサイエンス
  • XCO.T485 : 応用AI・データサイエンスC
  • XCO.T486 : 応用AI・データサイエンスD
  • XCO.T489 : 基盤人工知能
  • XCO.T490 : 基盤人工知能演習

履修の条件(知識・技能・履修済科目等)

本演習を履修する場合は,同年度・同クォータに開講される「XCO.T487 基盤データサイエンス」,「XCO.T489 基盤人工知能」および,「XCO.T490 基盤人工知能演習」を同時に履修してください.演習の履修希望者が多数の場合には基盤データサイエンス演習の初回に抽選を行う可能性があります.なお,物質・情報卓越教育院の登録学生は,「XCO.T487 基盤データサイエンス」および「XCO.T488 基盤データサイエンス演習」の代わりに「TCM.A404 マテリアルズインフォマティクス」を受講してください.

その他

Google Colaboratory を使って演習を行います.第1回目までに各自 Google アカウントを取得し,Google Drive でのファイルアップロード/ダウンロードができるようにしておいてください.

このページのトップへ