2019 Fundamentals of data science

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
School of Computing
Instructor(s)
Kabashima Yoshiyuki  Kanamori Takafumi  Sekijima Masakazu  Murata Tsuyoshi  Ono Shunsuke  Yanagisawa Keisuke  Nitta Katsumi 
Course component(s)
Lecture
Day/Period(Room No.)
Mon5-6(W531,G115)  
Group
-
Course number
XCO.T487
Credits
1
Academic year
2019
Offered quarter
4Q
Syllabus updated
2019/11/15
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

In the current society, it is essential in all fields to appropriately exploit "big data" for finding rules and/or making predictions/decisions. This course gives fundamental knowledges and basic skills for handling large-scale data sets with the aid of computers.

Student learning outcomes

Students will be able to apply basic knowledges on statistics for analyzing data and evaluating the obtained results mathematically.

Keywords

classification, clustering, principal component analysis, dimension reduction, training/generalization errors, cross validation

Competencies that will be developed

Intercultural skills Communication skills Specialist skills Critical thinking skills Practical and/or problem-solving skills

Class flow

All classes are given in both Ookayama and Suzukakedai campuses with the use of video conference systems.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Class guidance Guidance for class flow, computing environment, and used programming language (Python)
Class 2 Fundamentas of data analysis Learn basic knowledge about statistics and data science
Class 3 Classification and model evaluation Learn methods for extracting discrimination rules from labeled data. Learn about difference between training error and generalization error, and methods of model evaluation.
Class 4 Clustering Learn methods for categorizing unlabeled data into several categories
Class 5 Principal component analysis Learn principal component analysis together with mathematical issues related to it
Class 6 Dimension reduction Learn methods for dimension reduction such as multidimensional scaling and canonical correlation analysis
Class 7 Advanced topics Learn methods for ensemble learning
Class 8 General discussion Discuss possible applications of data analysis in various fields

Textbook(s)

Not specified.

Reference books, course materials, etc.

Distributed via OCW-i.

Assessment criteria and methods

Based on quizzes in class/reports.

Related courses

  • XCO.T488 : Exercises in fundamentals of data science
  • XCO.T483 : Advanced Artificial Intelligence and Data Science A
  • XCO.T484 : FinTech and Data Science
  • XCO.T485 : Advanced Artificial Intelligence and Data Science C
  • XCO.T486 : Advanced Artificial Intelligence and Data Science D
  • XCO.T489 : Fundamentals of artificial intelligence
  • XCO.T490 : Exercises in fundamentals of artificial intelligence

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Preferred to have basic knowledge about linear algebra, analysis, and mathematical statistics.

Page Top