2022年度 応用AI・データサイエンス発展D   Progressive Applied Artificial Intelligence and Data Science D

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
情報理工学院
担当教員名
金崎 朝子  三宅 美博  新田 克己  長橋 宏  小林 隆夫  田村 哲也  山田 剛史  藤本 將太郎  林 輝大  吉本 誠也  西田 大士朗  中野 雄矢  冨田 勇人  日山 拓海  山中 正雄  福島 真太朗  宮原 俊治  蒲池 恒彦  大力 亮  守屋 剛 
授業形態
講義    (ライブ型)
メディア利用科目
曜日・時限(講義室)
火9-10  
クラス
-
科目コード
XCO.T690
単位数
1
開講年度
2022年度
開講クォーター
2Q
シラバス更新日
2022年5月9日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

この授業科目は博士後期課程の学生を対象に人工知能とデータサイエンスにおける社会実装の最前線を学ぶことを目標としている。
デジタルアートや製造業におけるAI・データサイエンスの最前線で必要とされる技術の大枠を理解した上で、人工知能とデータサイエンスを活用する可能性について考察できるようデザインされている。
授業計画に示すとおり各回の授業において、講師がそれぞれのトピックに関する全体像と最近の技術動向と課題を解説する。

到達目標

この授業科目は、AIやデータサイエンス技術の社会応用に関する知識を獲得し、課題レポートによって社会応用に関する考察や新たな着想を説明することによって、受講生が実社会において活躍する広い視野を得ることを目標にしている。

実務経験のある教員等による授業科目等

該当する 実務経験と講義内容との関連(又は実践的教育内容)
本講義は株式会社チームラボ、トヨタ自動車株式会社、京セラ株式会社、エーザイ株式会社、東京エレクトロン株式会社におけるAIやデータサイエンスの社会実装の技術をそれぞれの企業の講師の方に講義していただきます。

キーワード

人工知能、データサイエンス、AIビジネス、デジタルアート、製造業

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

Zoomで講義を行います。各回の最後と期末にレポート課題を出しますので、指定された期限内にレポートを提出してください。

授業計画・課題

  授業計画 課題
第1回 デジタルアートにおけるAI活用(1) AIを用いたアート作品の概要と仕組みを理解する。
第2回 デジタルアートにおけるAI活用(2) AIを用いたアート作品の概要と仕組みを理解する。
第3回 モビリティにおけるデータ活用(1) モビリティの概念とモビリティの関連技術を理解する
第4回 モビリティにおけるデータ活用(2) モビリティの概念とモビリティの関連技術を理解する
第5回 人間拡張 テクノロジーによって人間の能力の補完や向上、または新たな能力の獲得を実現する人間拡張について、拡張の対象や実現方法を事例を交えながら説明する。
第6回 製薬企業におけるAI・データサイエンスの活用 近年の製薬企業におけるAI・データサイエンスの活用事例を、いくつかの具体的な事例紹介も踏まえて解説する。
第7回 AI・データサイエンスが創る半導体製造装置の未来 半導体の製造プロセスにおいて、機械学習や深層学習といった人工知能が使われるようになってきている。最先端の半導体製造プロセスを紹介し、そこに立ちはだかる技術的な高い壁、そしてそれを乗り越えるために人工知能をもちいて、いかに乗り越えていくのかを解説する。

授業時間外学修(予習・復習等)

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する 予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

なし

参考書、講義資料等

講義資料は事前にT2SCHOLAに掲載し、Zoom講義でも投影する

成績評価の基準及び方法

各回に提出を求める小レポートと期末レポートを総合して評価する

関連する科目

  • XCO.T487 : 基盤データサイエンス
  • XCO.T488 : 基盤データサイエンス演習
  • XCO.T489 : 基盤人工知能
  • XCO.T490 : 基盤人工知能演習

履修の条件(知識・技能・履修済科目等)

本講義は博士後期課程の学生だけが履修できます。博士後期課程以外の方はXCO.T486「応用AI・データサイエンスD」の履修申告をしてください。

その他

本講義は、株式会社チームラボ、トヨタ自動車株式会社、京セラ株式会社、エーザイ株式会社および東京エレクトロン株式会社のご協力に基づいて開講される。
Zoomを用いたオンライン講義である。

このページのトップへ