2022年度 応用AI・データサイエンスA   Applied Artificial Intelligence and Data Science A

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
情報理工学院
担当教員名
金崎 朝子  三宅 美博  小野 功  新田 克己  長橋 宏  小林 隆夫  大越 拓  平手 勇宇  赤鹿 秀樹  田島 玲  高橋 翼  金田 有二  山本 浩司 
授業形態
講義    (ライブ型)
メディア利用科目
曜日・時限(講義室)
火7-8  
クラス
-
科目コード
XCO.T483
単位数
1
開講年度
2022年度
開講クォーター
3Q
シラバス更新日
2022年9月13日
講義資料更新日
-
使用言語
日本語
アクセスランキング
media

講義の概要とねらい

この授業科目は人工知能とデータサイエンスにおける社会実装の最前線を学ぶことを目標としている。
WEBメディアにおけるAI・データ利活用基盤および情報検索と機械学習に着目し、それらの最前線で必要とされる技術の大枠を理解した上で、人工知能とデータサイエンスを活用する可能性について考察できるようデザインされている。
授業計画に示すとおり各回の授業において、講師がそれぞれのトピックに関する全体像と最近の動向を解説する。
博士後期課程の方はXCO.T687「応用AI・データサイエンス発展A」を申告してください。

到達目標

この授業科目は、人工知能とデータサイエンスに関する考察とそれぞれの着想を説明する機会を通じ、受講生が実社会において活躍する能力を高めることを目標にしている。

実務経験のある教員等による授業科目等

該当する 実務経験と講義内容との関連(又は実践的教育内容)
本講義は楽天、ヤフー、LINE、グーグルなどのIT企業におけるAIやデータサイエンスの社会実装の技術を企業の講師の方に講義していただきます。

キーワード

Webメディア, データ利活用,情報検索,ビッグデータ,機械学習、自然言語処理、認証技術、データベース、分散処理、広告技術、人工知能,データサイエンス

学生が身につける力(ディグリー・ポリシー)

専門力 教養力 コミュニケーション力 展開力(探究力又は設定力) 展開力(実践力又は解決力)

授業の進め方

この授業科目では、学生自らが能動的に学ぶことを重視します。各回の講義の最後にレポート課題を出しますので、指定された期限内にレポートを提出してください。

授業計画・課題

  授業計画 課題
第1回 楽天グループにおけるBig Data/AIの活用事例 楽天グループ(主にコマース領域)でのデータ/AI活用領域の紹介。楽天にはどれくらいの規模のデータが収集されているのか、それをどうビジネスに生かしているのか、データ/AIの仕事の進め方から求められる人材像について講義する
第2回 楽天グループにおけるAI関連研究開発事例 楽天グループにおけるAI関連の研究開発事例を用いながら、企業の研究開発組織がどのように事業に貢献しているのかについて紹介する
第3回 大規模Webサービス構築およびに決済のセキュリティに関して 大規模Webサービスを構築する際に検討すべき内容や注意すべき事柄などを事例を元に紹介するとともに、スマホ決済などで求められる不正対策やセキュリティなどに関して紹介する。
第4回 Yahoo! JAPANにおけるデータ利活用 Yahoo! JAPANでのAI/データ活用事例を共有する
第5回 LINEが推進する最先端AI技術 LINEのAI事業におけるビジョンとビジネス活用の事例を紹介すると共に、LINEの最先端AI技術について、音声や画像の認識と合成、大規模言語モデル、プライバシー保護やAIの信頼性に関する研究開発の事例を紹介する。
第6回 オンライン広告における機械学習・データサイエンス活用 オンライン広告における機械学習・データサイエンスの活用事例を紹介する
第7回 検索入力補助機能におけるデータサイエンスの活用(予定) Web上のさまざまな検索サービスにおいて、検索ユーザの利便性を高めるために検索クエリの入力を補助する機能が導入されている。このような機能の利便性をさらに改善するためのデータサイエンスの活用の取り組みについて説明する

授業時間外学修(予習・復習等)

学修効果を上げるため,教科書や配布資料等の該当箇所を参照し,「毎授業」授業内容に関する予習と復習(課題含む)をそれぞれ概ね100分を目安に行うこと。

教科書

指定しない

参考書、講義資料等

講義資料は事前にT2SCHOLAに掲載し、Zoom画面でも投影する。

成績評価の基準及び方法

期末試験は実施しない。毎回の課題レポートにより評価する。

関連する科目

  • XCO.T487 : 基盤データサイエンス
  • XCO.T488 : 基盤データサイエンス演習
  • XCO.T489 : 基盤人工知能
  • XCO.T490 : 基盤人工知能演習

履修の条件(知識・技能・履修済科目等)

博士後期課程の方はXCO.T687「応用AI・データサイエンス発展A」を申告してください。

連絡先(メール、電話番号)    ※”[at]”を”@”(半角)に変換してください。

新田克己   nitta.k.aa[at]m.titech.ac.jp
金崎朝子 kanezaki[at]c.titech.ac.jp
長橋宏  nagahashi.h.aa[at]m.titech.ac.jp   
小林隆夫 kobayashi.t.aq[at]m.titech.ac.jp

オフィスアワー

メールで事前予約すること。

その他

本講義は楽天, Yahoo! JAPAN, LINE, Google! JAPANのご協力に基づいて開講される。
講義はZoomで配信される。

このページのトップへ