2020 Inorganic Chemistry (Coordination Chemistry)

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Chemical Science and Engineering
Murahashi Tetsuro 
Course component(s)
Lecture    (ZOOM)
Day/Period(Room No.)
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

[Summary of the lecture] This course covers fundamental concepts on the reactions of transition metal complexes.
[Aim of the lecture] The reaction chemistry of metal complexes play an important role in inorganic chemistry. Teaching the fundamental concepts on the reaction chemistry of transition metal complexes provide students with the knowledge to correlate inorganic chemistry to catalysis and synthetic organic chemistry. In this course, students learn the fundamental reaction chemistry of transition metal complexes. Furthermore, students also learn how the elementary reactions of transition metal complexes are involved in catalytic reactions.

Student learning outcomes

At the end of this course, students will be able to:
1) explain the reaction patterns of metal complexes systematically.
2) understand and explain mechanisms of important metal-catalyzed reactions.


metal complex, ligand substitution reaction, trans effect, electron transfer, oxidative addition, reductive elimination, insertion, homogeneous catalysis, heterogeneous catalysis

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

This lecture will proceed in the following order: (1) ligand substitution reaction, (2) oxidation-reduction, (3) organometallic reaction. In the last day, exercise problems and interpretation of the answers will be given to assess the students’ level of understanding.

Course schedule/Required learning

  Course schedule Required learning
Class 1 ligand substitution reaction Explain the basic concept of ligand substitution reaction.
Class 2 mechanism of ligand substitution reaction Understand the mechanism of ligand substitution reaction.
Class 3 oxidation-reduction of metal complexes Understand the basic concept of oxidation-reduction of metal complexes.
Class 4 coordination bond in organometallic complexes Understand the coordination structures of organometallic complexes.
Class 5 reaction pattern of organometallic complexes Explain the important organometallic reactions including oxidative addition, reductive elimination, and insertion.
Class 6 Mechanism of homogeneous catalytic reactions Understand the mechanisms of important homogeneous catalysis.
Class 7 Exercise problems to assess the students’ level of understanding and interpretation of the answers Use the exercise problems to better understand the topics covered, and evaluate one’s own progress.

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.


P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, "Inorganic Chemistry", 6th Ed., Oxford University Press; ISBN: 978-0199641826.

Reference books, course materials, etc.

Course materials are provided during class and uploaded on OCW-i.

Assessment criteria and methods

Students will be assessed on their achievements of learning outcomes based on final exam (85%) and level of class participation (15%) (The level of class participation will be calculated by small examination etc. in the lecture).

Related courses

  • CAP.B221 : Inorganic Chemistry I (Chemical Bonding)
  • CAP.B222 : Inorganic Chemistry II (Chemical Reactions and Structures of Solids)
  • CAP.A371 : Inorganic Chemistry (Theory I)
  • CAP.A372 : Inorganic Chemistry (Theory II)
  • CAP.B224 : Inorganic Chemistry (Elements and Compounds)
  • CAP.A275 : Inorganic Chemistry (Solid State Chemistry)
  • CAP.B223 : Inorganic Chemistry (Materials Science)
  • CAP.A354 : Chemistry of Catalytic Processes I (Heterogeneous)
  • CAP.A355 : Chemistry of Catalytic Processes I (Homogeneous)

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites are necessary, but enrollment in the related courses (Inorganic Chemistry I (Chemical Bonding) (CAP.B221), Inorganic Chemistry II (Chemical Reactions and Structures of Solids) (CAP.B222), and Inorganic Chemistry (Materials Science) (CAP.B223), Inorganic Chemistry (Solid State Chemistry) (CAP.A275), Inorganic Chemistry (Elements and Compounds) (CAP.B224), Inorganic Chemistry (Theory 1) (CAP.A371), Inorganic Chemistry (Theory 2) (CAP.A372), Chemistry of Catalytic Processes I (Heterogeneous) (CAP.A354), and Chemistry of Catalytic Process II (Homogeneous) is desirable.

Contact information (e-mail and phone)    Notice : Please replace from "[at]" to "@"(half-width character).

Tetsuro Murahashi: mura[at]apc.titech.ac.jp

Office hours

Contact by e-mail in advance to schedule an appointment.

Page Top