2020 Inorganic Chemistry II (Chemical Reactions and Structures of Solids) A

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Chemical Science and Engineering
Ohtomo Akira 
Course component(s)
Lecture    (ZOOM)
Day/Period(Room No.)
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

[Description of the course] In this course, the instructor will explain acid-base reactions, redox reactions, and structures of crystalline solids to students who studied Inorganic Chemistry I (Chemical Bonding).
[Aim of the course] A chemical reaction involves formations and dissociations of chemical bonds that are initiated by transfers of valence electrons between the constituent atoms. Understanding the mechanisms of basic reactions as well as basic structures of crystalline solids is essential for comprehending the chemical nature of individual elements. Students gain an understanding of methods for describing the reactivity of acid-base and redox reactions, by using the Brønsted and Lewis acids and bases, HSAB rule, and electrochemical series. Also, they learn how a different atomic nature leads to different types of crystal structures and electronic structures in crystalline solids. Finally, students acquire the ability to discuss the reactivity of molecules and compounds and the chemical states of closely packed atoms based on the periodic table.

Student learning outcomes

At the end of this course, students will be able to:
1) acquire basic knowledge about and approaches to acids, bases, and redox.
2) explain crystal structures of simple solids based on knowledge of the chemical nature of elements
3) discuss the reactivity of molecules and compounds and the chemical states of closely packed atoms based on the periodic table.


acid-base reaction, Brønsted acid and base, Lewis acid and base, redox reaction, electrochemical series, disproportionation, comproportionation, crystal structure, ionic bond, lattice enthalpy

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

This lecture will proceed in the following order: (1) acid and base, (2) redox, (3) crystal structure of solids. In the last day, exercise problems and interpretation of the answers will be given to assess the students’ level of understanding.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Acid and base Understand how to represent the equilibrium of proton transfer quantitatively, using the acidity constant, and explain the features of the Brønsted acid-base.
Class 2 Acid-base reactions Understand the characteristics of the Lewis acid-base, generalized for acceptor and donor of an electron-pair, and explain the principle of various acid-base reactions with no proton transfer.
Class 3 Redox pairs and electrochemical series Understand how to represent the redox equilibrium quantitatively, using the standard potential of the redox couple, and derive the stability of the chemical species from the electrochemical series.
Class 4 Redox reactions Using Latimer, Frost, Pourbaix, and Ellingham diagrams, explain the features of the redox reaction in the various environments.
Class 5 Crystal structures of ionic solids Understand the type and description methods of crystal structure, the classification of some ionic solids and determine the bonding scheme and coordination number of them.
Class 6 Ionic bonding Explain the thermodynamic properties of solids based on the theory of ion model.
Class 7 Practice problems and remarks for confirming the level of understanding Use the exercise problems to better understand the topics covered, and evaluate one’s own progress.

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.


P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, "Inorganic Chemistry", 6th Ed., Oxford University Press; ISBN: 978-0199641826.

Reference books, course materials, etc.

Course materials are provided during class and uploaded on OCW-i.

Assessment criteria and methods

Students will be assessed on their achievements of learning outcomes based on exercise problems and others.

Related courses

  • CAP.B221 : Inorganic Chemistry I (Chemical Bonding)
  • CAP.B223 : Inorganic Chemistry (Materials Science)
  • CAP.B224 : Inorganic Chemistry (Elements and Compounds)
  • CAP.A275 : Inorganic Chemistry (Solid State Chemistry)

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites are necessary, but enrollment in the related courses (Inorganic Chemistry I (Chemical Bonding) (CAP.B221.R)) is desirable.

Contact information (e-mail and phone)    Notice : Please replace from "[at]" to "@"(half-width character).

Akira Ohtomo: aohtomo[at]apc.titech.ac.jp
Hajime Arai: arai.h.af[at]m.titech.ac.jp

Office hours

Contact by e-mail in advance to schedule an appointment.


Classes A and B are for the students with an odd and even student ID numbers, respectively.

Page Top