2019 Advances and Applications in Inorganic Chemistry II

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Chemical Science and Engineering
Instructor(s)
Nagai Keiji  Yokoi Toshiyuki 
Course component(s)
Lecture
Day/Period(Room No.)
Thr7-8(S321)  
Group
-
Course number
CAP.A387
Credits
1
Academic year
2019
Offered quarter
2Q
Syllabus updated
2019/4/8
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

[Summary of the course] This course focuses on advanced inorganic materials, especially relating to photonics and catalysis. For students at the other undergraduate majors, this course provides opportunity to learn advanced science and technology in the fields of applied chemistry as well as fundamentals to inorganic chemistry being equivalent to 200-level courses.
[Aim of the course] The aim of the course is to understand the importance of the basic inorganic chemistry from a global viewpoint. The relation to fundamental chemistry will be discussed with showing examples including frontier inorganic chemistry of photochemistry, solid chemistry and surface chemistry. However, the main topic is a review on the basic inorganic chemistry. Relationships with other chemistry fields (organic chemistry, macromolecular chemistry, chemical engineering and energy conversion) will also be discussed.

Student learning outcomes

At the end of this course, students will be able to:
1) Understand the importance and back ground of fundamental chemistry in order to study inorganic photochemistry and catalyst chemistry.
2) Indicate examples and mechanism of interaction between light and transition elements, metal and metal complex.
3) Explain synthesis route of nano particles and porous materials and relation between them and catalysis.

Keywords

Photonics, Catalysis, Surface Chemistry, Solid Chemistry, Nanomaterial, Supramolecule, Macromolecule, Chemical Engineering

Competencies that will be developed

Intercultural skills Communication skills Specialist skills Critical thinking skills Practical and/or problem-solving skills
- - -

Class flow

Each class contains (1) introduction of an application of inorganic chemistry, (2) giving problems, and (3) a review of fundamental inorganic chemistry. Some of the class have (4) Discussion or exercises, and (5) explanation for them. (6) Examinations will be done to assess students' achievements of learning outcomes.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Physicochemical properties of nano-sized materials Explain the unique properties, which are evolved in nano-sized materials.
Class 2 Preparation of nano-sized materials Explain the preparation method and the originated from nano-sized materials.
Class 3 Preparation and catalytic application of mesoporous materials (1) Understand the catalytic application of mesoporous materials and explain principles of the surface properties.
Class 4 Preparation and catalytic application of mesoporous materials (2) Understand the catalytic application of mesoporous materials and explain principles of the bulk properties.
Class 5 X-ray absorption and emission based on inorganic compounds Understand atomic orbital transition and explain x-ray generation.
Class 6 Light reflection and absorption by metal Understand interaction between free electron and light, and explain an example to generate high energy density state.
Class 7 Light absorption based on coordination bond and control of macroscopic phenomena by light absorption Understand the concept of coordination bonding of metal ion and explain their examples of light absorption and photo-induced redox.

Textbook(s)

Mark Weller, Tina Overton, Jonathan Rourke, and Fraser Armstrong, "Inorganic Chemistry", 6th Ed., Oxford University Press; ISBN:9780199641826.

Reference books, course materials, etc.

Reference materials will be distributed at the beginning of the course.

Assessment criteria and methods

Examination (50 %) and exercise (50 %) on various structures, properties and application for photoenergy conversion and catalysis of transition elements, metal, metal complex, nano particle, porous materials.

Related courses

  • CAP.A373 : Inorganic Chemistry (Coordination Chemistry)
  • CAP.A352 : Energy and Resource Conversion Chemistry II (Chemical Potential Conversion)
  • CAP.P342 : Biopolymer
  • CAP.C341 : Chemical Engineering Topics
  • CAP.A386 : Advances and Applications in Inorganic Chemistry I
  • CAP.B224 : Inorganic Chemistry (Elements and Compounds)

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Students must has a credit of Inorganic Chemistry (Elements and Compounds) otherwise, has knowledge for fundamentals of inorganic chemistry.

Page Top