2018 Inorganic Chemistry (Theory I)

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Chemical Science and Engineering
Instructor(s)
Takao Toshiro  Murahashi Tetsuro 
Course component(s)
Lecture
Day/Period(Room No.)
Fri3-4(S515)  
Group
-
Course number
CAP.A371
Credits
1
Academic year
2018
Offered quarter
1Q
Syllabus updated
2018/3/20
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

[Summary of the lecture] This course covers fundamental concepts of group theory and its application to inorganic chemistry, in particular to determine the physical and chemical properties of a molecule on the basis of its structure.
[Aim of the lecture] The concept of symmetry is of the greatest importance in inorganic chemistry, since it helps to determine the physical and chemical properties of a molecule, such as mode of vibration and molecular orbitals, without any complicated calculations. This course focuses on the use of the group theory to the classification of the molecules, constructing molecular orbitals, and analyzing molecular vibrations and their selection rules. Students understand that symmetry considerations can be used to predict physical and chemical properties of a molecule.

Student learning outcomes

At the end of this course, students will be able to:
1) explain the symmetry operations, which leaves a molecule apparently unchanged and associated symmetry elements.
2) determine the point groups of molecules on the basis of their structure.
3) explain the physical and chemical properties of a molecule by the use of character tables.
4) construct of molecular orbitals from symmetry adapted linear combinations of atomic orbitals.

Keywords

symmetry, symmetry operations, symmetry elements, point groups, character tables, symmetry labels, symmetry adapted linear combinations of atomic orbitals, molecular vibration, molecular orbital

Competencies that will be developed

Intercultural skills Communication skills Specialist skills Critical thinking skills Practical and/or problem-solving skills
- - - -

Class flow

This lecture will proceeds in the following order: (1) the basic concepts of the group theory (2) assignment of a molecule to a particular point group (3) prediction of physical and chemical properties of a molecule by the use of character tables, such as analyzing molecular vibrations and their selection rules, construction of molecular orbitals by using symmetry adapted linear combinations of atomic orbitals. In the last day, final examination is set to assess the level of understanding.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Molecular symmetry; symmetry operations and symmetry elements Explain symmetry operations and symmetry elements of a molecule and assign a molecule to a particular point group on the basis of its structure.
Class 2 Character tables and symmetry labels, and their application to determine the molecular vibration mode Explain the characters, symmetry labels, and character tables.Determine the mode of molecular vibrations on the basis of its structure.
Class 3 the symmetry adopted linear combination (SALC) Explain the symmetry adopted linear combination.
Class 4 Applications of symmetry: The construction of molecular orbitals, Crystal field theory Construct molecular orbitals from the symmetry adopted linear combination of
Class 5 The electoric structures of d-metal complexes. The electronic spectra and the spectroscopic terms Explain the microstate of electronic configurations using spectroscopic terms by considering Russell-Saunders coupling.
Class 6 Ligand-field transitions and Tanabe-Sugano diagrams 1 Explain the correlation of the specroscopic terms of a free ion with those put in a strong-filed field.
Class 7 Ligand-field transitions and Tanabe-Sugano diagrams 2 Explain the d-d transitions of a complex based on Tanabe-Sugano diagrams.
Class 8 Practice problems to assess the level of understanding and explanation of the answers Understand the course contents and solve practice problems.

Textbook(s)

P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, "Inorganic Chemistry", 5th Ed., Oxford University Press; ISBN: 978-0199236176

Reference books, course materials, etc.

1) None required.
2) All materials used in class can be found on OCW-i.

Assessment criteria and methods

Final examination (70%), level of class participation (30%) which is assessed by small quizzes and so on.

Related courses

  • CAP.B223 : Inorganic Chemistry (Materials Science)
  • CAP.B221 : Inorganic Chemistry I (Chemical Bonding)
  • CAP.B222 : Inorganic Chemistry II (Chemical Reactions and Structures of Solids)
  • CAP.B224 : Inorganic Chemistry (Elements and Compounds)
  • CAP.A372 : Inorganic Chemistry (Theory II)

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites are necessary, but enrollment in the related courses (Inorganic Chemistry I (Bonding) (CAP.B221), Inorganic Chemistry II (Chemical Reactions and Structures of Solids) (CAP.B222), Inorganic Chemistry (Materials Science) (CAP.B223), and Inorganic Chemistry (Elements and Compounds) (CAP.B224) ) is desirable.

Contact information (e-mail and phone)    Notice : Please replace from "[at]" to "@"(half-width character).

Toshiro Takao (takao.t.aa[at]m.titech.ac.jp・ext. 2580)

Office hours

Contact by e-mail in advance to schedule an appointment.

Page Top