2023 Interdisciplinary principles of energy devices 2 すずかけ

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Energy Science and Engineering
Instructor(s)
Nabae Yuta  Yamada Akira  Miyajima Shinsuke  Hirayama Masaaki  Wada Hiroyuki 
Class Format
Lecture    (Blended)
Media-enhanced courses
Day/Period(Room No.)
Tue3-4(G1-109 (G115))  
Group
すずかけ
Course number
ENR.A404
Credits
1
Academic year
2023
Offered quarter
2Q
Syllabus updated
2023/3/20
Lecture notes updated
-
Language used
English
Access Index

Course description and aims

There are various types of energy such as heat, chemical, electrical and nuclear energy and so on, and present human society is built upon the technologies of transportation and the usage of electrical energy. Therefore, we should convert from primary energy to electrical energy using various energy conversion devices to supply society. Energy conversion devices such as electrical generators using thermal energy, heat pumps, electrical generators using nuclear power, fuel cells, solar cells, light emitting devices, and batteries allow us to supply electrical power on demand as well as to store energy. The conversion efficiency of these devices is governed not only by thermodynamics but also by many technical limitations. Therefore, understanding the energy conversion devices is of great importance in order to create a sustainable society from the viewpoint of energy supply. Students learn the basics of energy devices including fundamental operating mechanisms, advantages and disadvantages of technology, and state-of-the-art devices through Interdisciplinary Principles of Energy Devices 1 and 2. This course focuses on photoelectric conversion (light energy/electrical energy) and chemical energy/electrical energy. Operating principles and features of fuel cells, solar cells, light emitting devices, and batteries will be explained. Working mechanisms of these energy conversion devices facilitate students’ understanding of photoelectric conversion and electrochemistry as well as related technologies.

Student learning outcomes

By the end of this course, students will be able to:
1. Explain the basics of fuel cells.
2. Explain the basics of solar cells.
3. Explain the basics of light emitting devices.
4. Explain the basics of batteries.
5. Explain the similarities and differences among these devices.

Keywords

fuel cells, solar cells, light emitting devices, batteries

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

After the face-to-face guidance of this course, each device will be explained in six classes by Zoom. After them, term-end exam will be held at each Campus.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Outline of energy conversion devices, relationship between theoretical efficiencies, temperature, and materials in fuel cells (Ookayama: face-to-face Manabu Ihara, Suzukakedai: face-to-face Akira Yamada) Explain the outline of energy conversion devices and theoretical efficiencies of fuel cells
Class 2 Solar spectrum, Instruction capacity of PV system, Components of PV system, Efficiency of solar cell (Zoom Shinsuke Miyajima) Explain features of sunlight energy and PV system.
Class 3 Operation principle of solar cell, Efficiency limit, silicon solar cell, thin film solar cell (Zoom Shinsuke Miyajima) Explain the operation principle of solar cell and features of silicon solar cell and thin film solar cell.
Class 4 Theoretical electromotive force of fuel cells with different kinds of electrolyte, calculating methods and loss factors of conversion efficiency, and the details of polymer electrolyte fuel cells (ZOOM Yuta Nabae) Explain the basics and principles of fuel cells, theoretical efficiency of fuel cells and the details of polymer electrolyte fuel cells.
Class 5 Electrode reactions in various type of fuel cells, and the details of solid oxide fuel cells (ZOOM Yuta Nabae) Explain the types of fuel cells and features of polymer electrolyte fuel cells.
Class 6 Basics and applications of various light-emitting devices (lighting, back-lit, liquid crystal display (LCD), Organic light emitting display (OLED), light-emitting diode (LED), laser diode (LD)) (Zoom Hiroyuki Wada) Explain the principles and structures of various light-emitting devices (lighting, back-lit, liquid crystal display (LCD), Organic light emitting display (OLED), light-emitting diode (LED), laser diode (LD)).
Class 7 Basics of rechargeable batteries (electrochemical reactions, types, applications) (Zoom, Masaaki Hirayama) Explain the features of various rechargeable batteries and their applications in practical use.

Out-of-Class Study Time (Preparation and Review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100 minutes reviewing class content afterwards (including assignments) for each class.
They should do so by referring to textbooks and other course material.

Textbook(s)

There is no textbook. Materials will be distributed as needed.

Reference books, course materials, etc.

Reference books will be shown if needed.

Assessment criteria and methods

Evaluation will be based on the mini-exam and term-end exam.

Related courses

  • ENR.A403 : Interdisciplinary principles of energy devices 1
  • ENR.A401 : Interdisciplinary scientific principles of energy 1
  • ENR.A402 : Interdisciplinary scientific principles of energy 2
  • ENR.A405 : Interdisciplinary Energy Materials Science 1
  • ENR.A406 : Interdisciplinary Energy Materials Science 2
  • ENR.A407 : Energy system theory
  • ENR.B431 : Recent technologies of fuel cells, solar cells butteries and energy system

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites.

Page Top