2019 Organic Materials Laboratory III

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Materials Science and Engineering
Instructor(s)
Morikawa Junko  Akasaka Syuichi  Ashizawa Minoru  Iwahashi Takashi  Umemoto Susumu  Kawamoto Tadashi  Kuboyama Keiichi  Takarada Wataru  Nabae Yuta  Zamengo Massimilia 
Course component(s)
Day/Period(Room No.)
Tue5-8(S8-108,S8-109)  Fri5-8(S8-108,S8-109)  
Group
-
Course number
MAT.P352
Credits
2
Academic year
2019
Offered quarter
4Q
Syllabus updated
2019/4/18
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

Understanding the principle of experiments and the obtained meanings of the properties by the experiments is essential in material science and engineering. The learning of fundamental skills of chemical and physical measurement opeation is required for the correct and safe experiments. In this experiment course, the following topics will be covered: application of finite difference method for numerical analysis of heat transfer, comparative analysis of numerical results with direct temperature measurements and heat transfer visualization using an infrared camera; measure the characteristics of PLLA with differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and dynamic mechanical analysis (DMA), understand the principles of those measurements, discuss the relationship between the micro-structure and thermal and mechanical (temperature- and frequency-dependence) characteristics; experience the melt-processing of thermoplastic polymers, understand the relationship between process conditions, fiber structures and fiber properties through structure analyses and property measurements of synthetic fibers which were made in various conditions. The safety training programs for experiments will be also learned. The aims of this course are to make students get the basics for organic and polymeric materials through the learning of experimental operations, principles, comparison between the theoretical and observed data, in order to improve their skills and understandings from the viewpoints of general education covering the wide area from the basics to the advanced research of science and engineering. Additionally, the number of students may be restricted due to the limitation of a laboratory space. The learning quarters and orders could be also changed. Students can learn whole themes in Experiments of Organic and Polymeric Materials I, II and III in a different order, by taking all courses of Experiments of Organic and Polymeric Materials at 1st, 3rd and 4th quarters.

Student learning outcomes

By the end of this course, students will be able to:
1. acquire fundamental skills of chemical and physical measurement operations,
2. understand the chemical reactions and analysis,
3. understand the meanings of measured properties and their principles,
4. understand the relation between the conditions of sample preparation and their properties,
5. understand the experimental methods, data analysis and discussion based on obtained data,
and learning the basics for more advanced experiments.

Keywords

Organic and polymeric materials, material engineering, experiment, analysis method, property measurement, numerical calculation

Competencies that will be developed

Intercultural skills Communication skills Specialist skills Critical thinking skills Practical and/or problem-solving skills
- -

Class flow

Students work in teams throughout this course and conduct a series of experimental themes. The learning quarters and orders could be also changed. Students can learn whole themes in Experiments of Organic and Polymeric Materials I, II and III in a different order, by taking all courses of Experiments of Organic and Polymeric Materials at 1st, 3rd and 4th quarters. Written reports must be submitted by designated dates. Students must read the experiment text before the start of each experiment to ensure safety and smooth running.

Course schedule/Required learning

  Course schedule Required learning
Class 1 Safety training program 5 (fire-safety, fire extinction and others)
Class 2 Direct measurement of thermal conductivity and specific heat capacity. Indirect determination of thermal diffusivity. Comparison of thermal properties using different methods and sensors. Numerical analysis of results using a finite difference method.
Class 3 Introduction to the use of infrared sensor for visualization of temperature change. Direct measurement of thermal diffusivity using flash method and infrared sensor.
Class 4 Measurements of time-dependent temperature change in polymeric materials and comparison with the results of one-dimension numerical analysis.
Class 5 Oral presentation of experimental results.
Class 6 Thermal characteristics by differential scanning calorimetry of Poly-L-lactide (PLLA) Measure the characteristics of PLLA with differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and dynamic mechanical analysis (DMA). Understand the principles of those measurements. Discuss the relationship between the micro-structure and thermal and mechanical (temperature- and frequency-dependence) characteristics.
Class 7 Microstructure analysis by wide-angle X-ray diffraction of PLLA
Class 8 Temperature dependence of viscoelasticity of PLLA
Class 9 Frequency dependence of viscoelasticity of PLLA
Class 10 Melt-spinning of synthetic fibers Experience the melt-processing of thermoplastic polymers. Understand the relationship between process conditions, fiber structures and fiber properties through structure analyses and property measurements of synthetic fibers which were made in various conditions.
Class 11 Measurements of physical properties of synthetic fibers
Class 12 Measurements of thermal properties of synthetic fibers
Class 13 Measurements of fiber structure of synthetic fibers
Class 14 Course for data processing 2 (data reduction, spectrum analysis, etc.) Leaning concept of spectrum analysis etc.
Class 15 Safety training program 6 (general overview and check of understanding)

Textbook(s)

SAFETY HANDBOOK, Tokyo Institute of Technology (in Japanese)

Reference books, course materials, etc.

Course texts are provided during class.

Assessment criteria and methods

Full attendance and completion of all experiments are compulsory. Assessment is based on the quality of the written reports and on the status of submission thereof. Students may fail the course if they repeatedly come late to classes or often delay the submission of reports.

Related courses

  • MAT.P351 : Organic Materials Laboratory II
  • MAT.P351 : Organic Materials Laboratory II
  • MAT.A250 : Materials Science Laboratory I
  • MAT.A251 : Materials Science Laboratory II
  • MAT.A252 : Materials Science Laboratory III

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites are necessary, but enrollment in the related courses is desirable.

Page Top