2018 Quantum Chemistry B

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Undergraduate major in Materials Science and Engineering
Ouchi Yukio 
Course component(s)
Day/Period(Room No.)
Course number
Academic year
Offered quarter
Syllabus updated
Lecture notes updated
Language used
Access Index

Course description and aims

This is a continuation of “Quantum Mechanics of Materials (MAT.A202.R)”, and is the second of a two course sequence with “Quantum Chemistry A(MAT.P201.E). In “Quantum Chemistry A”, we learn the postulates and formulations of quantum mechanics to understand approximate methods in quantum chemistry and mastering its calculation techniques, such as perturbation and a variation principle. “Quantum Chemistry B (MAT.P202.E)” covers its application to simple real physical systems, such as “molecular orbital theory” and “interaction of light and matter”.

Student learning outcomes

[Outcome] To gain an understanding of advanced materials science, quantum mechanics and the way of its application to chemistry and material engineering are essential in order to answer the questions on the structure and function of materials. Upon successful completion of “Quantum Chemistry B”, students will have accomplished the objectives of learning “molecular orbital theory” and “interaction of light and matter” on the basis of “Quantum Chemistry A”.
[Theme] Quantum mechanics fails to obtain rigorous solutions for complex systems. To overcome these difficulties, many types of approximate methods and techniques have been invented and applied. This course focuses on the applications of perturbation and a variation principle to quantum chemistry problems.


molecular orbital theory (the hydrogen molecule-ion, diatomic molecules, polyatomic molecules, the Hückel approximation), molecular symmetry, group theory, interaction of light and matter, semi-classical approach, time-dependent Schrödinger equation, time-dependent perturbation, absorption and emission of light, transition probability, spontaneous emission, stimulated emission

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

Course materials are provided beforehand. Before coming to class, students should read the course schedule and contents of the course materials. Required learning should be completed outside of the classroom for preparation and review purposes,

Course schedule/Required learning

  Course schedule Required learning
Class 1 Molecular orbital theory (1) (the hydrogen molecule-ion) Homework is given in the class.
Class 2 Molecular orbital theory (2) (diatomic molecules)
Class 3 Molecular orbital theory (3) (polyatomic systems)
Class 4 Molecular orbital theory (4) (the Hückel approximation)
Class 5 Molecular symmetry (symmetry elements and applications to molecular orbital theory)
Class 6 Interaction of light and matter (1) (semi-classical approach, time-dependent perturbation)
Class 7 Interaction of light and matter (2) (absorption and emission of light, transition probability)
Class 8 General review


Course materials are provided beforehand.

Reference books, course materials, etc.

Yoshiya HARADA, "Quantum Chemistry", Sho-kabo, in Japanese
Masayoshi Oiwa, "10 lectures of calculas for chemist", Kagakudojin, in Japanese
Peter ATKINS, Physical Chemistry, Oxford

Assessment criteria and methods

Homework: 20%, Final Exam: 80%.

Related courses

  • MAT.A203 : Quantum Mechanics of Materials
  • MAT.P201 : Quantum Chemistry A

Prerequisites (i.e., required knowledge, skills, courses, etc.)

It is recommended but not required that students take general physics and calculus, matrix/linear alegra, and ordinary differential and partial equations. Enrollment in "quantum chemistry A" is desirable.

Page Top