2019年度 計量経済学第一   Econometrics I

文字サイズ 

アップデートお知らせメールへ登録 お気に入り講義リストに追加
開講元
経営工学系
担当教員名
樋口 洋一郎 
授業形態
講義
曜日・時限(講義室)
火5-6(W934)  金5-6(W934)  
クラス
-
科目コード
IEE.B207
単位数
2
開講年度
2019年度
開講クォーター
3Q
シラバス更新日
2019年9月19日
講義資料更新日
-
使用言語
日本語
アクセスランキング

講義の概要とねらい

計量経済学は経済学理論が提出する命題を実証する道具である。最小自乗法を基礎に簡単に推定は可能であり、それに基づき命題の検定も可能である。しかし、簡単さの裏には、信頼性を確保するための諸前提があることを学ばなければならない。その諸前提が成立していないのであれば検定自体の信頼性は失われてしまう。それゆえ諸前提が成立しているかの事後評価と、ある前提が成立していない場合に用いなければならない、より高度な推定法及び検定法を学習しなければならない。また、計量経済学は予測の道具でもある。しかし、予測に用いられる推定量は確率変数であることを忘れてはならない。過去の傾向が不変であるという前提のもとで算出された予測量は確率変数であり、ばらつきが必然的に伴う。問題はそのばらつきの大きさであることを学ばなければならない。

到達目標

 回帰モデルの基礎として、古典的2変数回帰モデルからはじめ、多変数回帰モデルを行列代数を用いて学習し、単純命題や複合命題の検定方法を学び、構造変化など発生していないかなどに用いてみる。説明変数の選択や関数型の選択などのモデル定式化や多重共線性などにより起こる問題とその対処法を学ぶ。
 回帰モデルの拡張として、一般化古典的回帰モデルを用いて、不均一分散や系列相関への対処法を学ぶ。

キーワード

最小自乗法、回帰モデル、古典的2変数回帰モデル、多変数回帰モデル、行列代数、仮説検定、構造変化、モデル定式化、多重共線性、一般化古典的回帰モデル、不均一分散、系列相関

学生が身につける力

国際的教養力 コミュニケーション力 専門力 課題設定力 実践力または解決力
- - - -

授業の進め方

講義時間はを予定された教授内容の説明に当てる。章末練習問題は模範解答を配布するので、その改良・精密化を宿題として課せられる。

授業計画・課題

  授業計画 課題
第1回 イントロダクション
第2回 条件付き期待値と直線の当てはめ
第3回 古典的2変数回帰モデル 関連章末練習問題
第4回 パラメータの検定と予測
第5回 多変数回帰モデル 関連章末練習問題
第6回 古典的多変数回帰モデル
第7回 仮説検定 関連章末練習問題
第8回 多変数回帰モデルの応用
第9回 複数仮説の検定:制約付き回帰と構造変化の検定 関連章末練習問題
第10回 モデルの定式化
第11回 多重共線性 関連章末練習問題
第12回 一般化古典的回帰モデル:不均一分散と系列相関(1)
第13回 一般化古典的回帰モデル:不均一分散と系列相関(2) 関連章末練習問題
第14回 一般化古典的回帰モデル:方程式システムの推定(1)
第15回 一般化古典的回帰モデル:方程式システムの推定(2) 関連章末練習問題

教科書

浅野・中村「計量経済学」(第2版)有斐閣,2009.

参考書、講義資料等

特になし

成績評価の基準及び方法

宿題40%、期末試験60%で成績を評価する。

関連する科目

  • IEE.A205 : 経営・経済のための統計
  • IEE.A204 : 経営・経済のための確率
  • IEE.B301 : 計量経済学第二
  • IEE.B336 : 応用計量経済学
  • IEE.B405 : 上級計量経済学
  • IEE.B434 : 計量経済学特講

履修の条件(知識・技能・履修済科目等)

IEE.A204 : 経営・経済のための確率
IEE.A205 : 経営・経済のための統計
この二つの科目の単位取得をしていること

このページのトップへ