2016 Fundamentals of Light and Matter I

Font size  SML

Register update notification mail Add to favorite lecture list
Academic unit or major
Graduate major in Electrical and Electronic Engineering
Instructor(s)
Kajikawa Kotaro  Munekata Hiro  Ito Haruhiko 
Course component(s)
Lecture
Mode of instruction
 
Day/Period(Room No.)
Mon3-4(G221)  Thr3-4(G221)  
Group
-
Course number
EEE.D431
Credits
2
Academic year
2016
Offered quarter
1Q
Syllabus updated
2016/4/27
Lecture notes updated
-
Language used
Japanese
Access Index

Course description and aims

Fundamentals of optics and optical properties of matters are lectured for the students who majors in electronics and applied physics. It is also open for the students in other departments who are interested in the optics and optical properties of matters. The lecture is divided into three parts: (a) electromagnetic wave and matter by Prof. Kajikawa (b) fundamentals of quantum optics by Prof. Ito and (c) fundamentals of optical properties of condensed matters by Prof. Munekata. In (a), the students learn light propagation in a matter, refractive index, polarization, light reflection and refraction, optical waveguide, optical fiber and spectroscopy. In (b), we quantize electric magnetic fields and examine photon number states and coherent states using an operator method. Then, we learn the relation between atomic energy structures and orbital and spin angular momenta, and solve selection rules on optical transitions. We also learn the fundamentals of laser oscillation. In (c), students will learn the qualitative origin of energy bands in solids, together with fundamental concept of absorption of light in solids, quantum size effect, and light emitters / detectors.
This lecture is for the students in Department of Electrical and Electronic Engineering. The students belonging to other courses are also recommended to have this lecture who are going to learn Fundamentals of Light and Matter IIa, IIb and IIc.

Student learning outcomes

The students will understand:
(a) propagation in a matter, refractive index, polarization, light reflection and refraction, optical waveguide, optical fiber and spectroscopy.
(b) algebraic calculations with creation and annihilation operators, photon number states and coherent states, label of atomic energy levels with angular momenta, selection rules, and lasing property.
(c) why energy states as well as light absorption/emission spectra become broad in solids.

Keywords

refractive index, optical waveguide, light reflection and refraction, spectroscopy, quantum optics, laser, semiconductor, light emitting diodes, photo-diodes

Competencies that will be developed

Specialist skills Intercultural skills Communication skills Critical thinking skills Practical and/or problem-solving skills

Class flow

After the lecture, students will have exercise problems.

Course schedule/Required learning

  Course schedule Required learning
Class 1 propagation in a matter, refractive index, polarization Understand the origin of refractive index and polarization
Class 2 phase velocity and group velocity, light reflection and refraction. Understand phase velocity and group velocity, light reflection and refraction
Class 3 total reflection and optical waveguide. Understand total reflection and optical waveguide
Class 4 optical fiber Understand the optical fiber and optical mode
Class 5 infrared spectroscopy, visible light spectroscopy, Raman spectroscopy, photoelectron spectroscopy. Understand the principles of the spectroscopy methods
Class 6 quantization of light Quantize electric magnetic fields
Class 7 photon number states and coherent states Understand calculations with creation and annihilation operators and optical quantum states.
Class 8 atomic energy and angular momentum Express atomic energy levels with angular momenta.
Class 9 optical transition Solve energy level splits due to the spin-orbital interaction and selection rules on photon absorption and emission.
Class 10 laser Understand the principle of laser oscillation.
Class 11 Light absorption spectrum in solids, energy bands, lattice vibration Understand microscopic origin of light absorption in visible and infrared wavelength regions.
Class 12 Behavior of electrons in energy bands Understand concept of electrons as waves.
Class 13 Principles of light absorption and emission in solids Understand importance of momentum and energy conservation.
Class 14 Quantum size effects Understand why physical properties change by reducing the size of solids
Class 15 Fundamentals of photo-emitters and photo-detectors Understand the relation between materials and functionality of devices

Textbook(s)

None. In (b), a lecture note is distributed.

Reference books, course materials, etc.

G. R. Fowles: Introduction to Modern Optics, Dover ISBN0-486-65967-7
C. Kittel: Introduction to Solid State Physics (either 6, 7, 8th edition), (8th ed. ISBN-10: 0471111813)

Assessment criteria and methods

Students' knowledge of optics and optical properties of matters, and their ability to apply them to problems will be assessed.
Final exams approx 70%, exercise problems 30%.

Related courses

  • EEE.D531 : Fundamentals of Light and Matter IIa
  • EEE.D532 : Fundamentals of Light and Matter IIb
  • EEE.D533 : Fundamentals of Light and Matter IIc

Prerequisites (i.e., required knowledge, skills, courses, etc.)

None

Page Top